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Abstract. Any set of truth-functional connectives has sequent calculus rules that can be
generated systematically from the truth tables of the connectives. Such a sequent calculus gives
rise to a multi-conclusion natural deduction system and to a version of Parigot’s free deduction.
The elimination rules are “general,” but can be systematically simplified. Cut-elimination and
normalization hold. Restriction to a single formula in the succedent yields intuitionistic versions
of these systems. The rules also yield generalized lambda calculi providing proof terms for
natural deduction proofs as in the Curry–Howard isomorphism. Addition of an indirect proof
rule yields classical single-conclusion versions of these systems. Gentzen’s standard systems arise
as special cases.

§1. Introduction. The literature on structural proof theory and proof-theoretic
semantics, and especially the literature on proof-theoretic harmony, is full of
sophisticated considerations offering various methods for deriving elimination rules
from introduction rules, articulating criteria for what the meaning expressed or inherent
in an introduction or elimination rule is, and of investigations of particular sets of rules
regarding their proof-theoretic properties and strengths. Rather than attempt to cut
through this multitude of complex and interacting considerations, it may be beneficial
to adopt a general perspective. Such a general perspective may provide insight into the
combinatorial reasons why certain sets of rules and certain ways of constructing calculi
have certain properties (such as cut elimination or normalization).

Here we explore an approach based on the work of Baaz (1984). This approach gives
a general method for determining rules for a classical sequent calculus for arbitrary
n-valued connectives. Zach (1993) and Baaz, Fermüller, & Zach (1994) showed that
the cut-elimination theorem holds for such systems. The approach generalizes the
classical case: Gentzen’s LK is the result of the method applied to the truth-tables for
the classical two-valued connectives. Thus, the cut-elimination theorem for LK can be
explained by the structural features of the sequent calculus together with a semantic
feature of the logical rules of LK, namely that the conditions under which the premises
of any pair of left and right rules are satisfied are incompatible. This is an explanation in
the sense that the specific result for LK follows from a general result about any sequent
calculus the rules of which satisfy this simple semantic property. A restricted calculus
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646 RICHARD ZACH

such as one for intuitionistic logic will also satisfy this property, and so the explanation
extends to LJ. It shows that there is nothing special about the usual rules for ∧,
∨, →; any truth functional operator can be accommodated using a general schema
of which the usual operators are special cases, and cut-elimination will hold. Baaz,
Fermüller, & Zach (1993) showed how the same method can be used to obtain multi-
conclusion natural deduction systems. This applies in the two-valued case as well, and
yields natural deduction systems for any truth-functional connective (e.g., see Zach
(2016) for a detailed treatment of the cases of the nand and nor operators). Here
we show that the connections between multi-conclusion and single-conclusion natural
deduction systems generalize, and that all such systems (multi- or single-conclusion)
normalize.

The general result about cut elimination is obtained by considering the relation
between the cut rule in LK and the resolution rule, and observing that a resolution
refutation yields a derivation of the conclusion of a cut (more precisely, mix) inference
from the premises of corresponding left and right logical inferences directly, using
only cuts. This is the essential part of Gentzen’s cut-elimination procedure. It also
underlies the reduction and simplification conversions of the normalization proof for
natural deduction. Rather than attempt to explain the proof-theoretic harmony enjoyed
by specific sets of rules by deriving some of them from others (e.g., the derivation of
elimination rules from introduction rules), we can explain it as a result of combinatorial
features of the rules which flow naturally from the classical semantics. These features
are preserved, moreover, when the calculi are restricted in certain ways to obtain
intuitionistic systems.

Combinatorial features of rules can also explain, and be explained by, the properties
we want the full systems they are part of to enjoy. The reduction of cuts and local
derivation maxima requires, and is made possible by, a combinatorial feature of
the left/right (intro/elim) rule pairs, namely that a complete set of premises can
be refuted. The Curry–Howard isomorphism between derivations and terms in a
lambda calculus, and correspondingly between proof reductions and �-reductions
in the lambda calculus, requires, and is made possible by, the same property. The
general perspective taken here shows how the Curry–Howard correspondence pairs
discharge of assumptions with abstraction, and proof substitutions with reduction, in
the following sense: the constructor and destructor terms corresponding to intro and
elim rules require the abstraction of a variable every time an assumption is discharged.
The →-intro rule and simple �-abstraction appear as special cases where discharge in
a single premise corresponds to abstraction of a single variable, and the constructor
function symbol can essentially be left out.

This perspective is of course not the only possible one. It generalizes the various
proof-theoretic frameworks in one direction, namely sets of connectives and rules
other than the usual set of ¬, ∧, ∨, →. It is applicable to any (set of) connectives
that has a truth-table semantics (in the classical case). The intuitionistic case then
arises in the same way that LJ arises from LK by restriction to a single formula in the
succedent. Other approaches are more appropriate if one wants to avoid a semantics as
a starting point, or at least not assume that the connectives considered have a classical
semantics. Schroeder-Heister (1984) has generalized natural deduction directly by
allowing not just formulas, but rules as assumptions, and considers natural deduction
rules for arbitrary connectives in this framework. Another general perspective is taken
by Sambin, Battilotti, & Faggian (2000), where the generalization covers more kinds of
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CUT ELIMINATION AND NORMALIZATION FOR GENERALIZED CALCULI 647

calculi (e.g., substructural systems). They take as their starting point the introduction
(right) rules for a connective and derive the elimination (left) rules from it by a
process of “reflection.” The connection between these two approaches is investigated
in Schroeder-Heister (2013).

In the rest of the paper we review the construction of general sequent calculi (§2)
and show how the usual rules of LK arise as the result of splitting of rules, to ensure at
most formula occurs in the succedent of any premise (§3). From these sequent calculi
we obtain multi-conclusion natural deduction systems with general elimination rules
(§4). The usual natural deduction rules arise by specializing these general elimination
rules (§5). We show that the cut elimination theorem holds for the sequent calculi
so constructed (§6) and that normalization holds for the multi-conclusion natural
deduction systems (§7). The process of splitting rules guarantees that for any connective
there are candidate rules for a single-conclusion sequent calculus, which relates to the
multi-conclusion system as intuitionistic sequent calculus LJ relates to classical LK. We
describe such “intuitionistic” single-conclusion sequent calculi (§8) and explain how to
obtain a classical single-conclusion system equivalent to the multi-conclusion system
(§9). From single-conclusion sequent calculi we can in turn obtain single-conclusion
natural deduction systems (§10). The rules of single-conclusion natural deduction
correspond to constructors and destructors for a generalized lambda calculus, of
which the usual typed lambda calculus is again a special case (§11). We describe how
the general construction of rules also extends to Parigot’s system of free deduction
(§12), recently rediscovered by Milne as natural deduction with general elimination
and general introduction rules. Finally, we sketch how to extend the approach to
quantifiers (§13).

§2. Complete sets of sequent calculus rules. We recall some terminology: A literal is
an atomic or a negated atomic formula. A disjunction of literals is also called a clause
and is often often written simply as a set. Thus, the disjunction ¬A1 ∨ A2 may also
be written as {¬A1, A2}. Satisfaction conditions for clauses under a valuation v are
just those of the corresponding disjunction, i.e., if C = {L1, ... , Ln} is a clause, v � C
iff v � Li for at least one Li . A set of clauses is satisfied in v iff each clause in it is.
Thus, a set of clauses corresponds to a conjunctive normal form, i.e., a conjunction of
disjunctions of literals.

Now consider a truth-functional connective �. To say that � is truth-functional is
to say that its semantics is given by a truth function �̃ : {�,⊥}n → {�,⊥}, and that
the truth conditions for a formula A ≡ �(A1, ... , An) are given by:

v |= �(A1, ... , An) iff �̃(v1, ... , vn) = �,

where vi = � if v |= Ai and = ⊥ otherwise.
As is well known, every truth-functional connective �(A1, ... , An) can be expressed

by a conjunctive normal form in the Ai , i.e., a conjunction of clauses in the Ai , and
the same is true for its negation. In other words, for every truth function �̃, there is
a set of clauses C(�)+ which is satisfied in v iff �(A1, ... , An) is, and a set of clauses
C(�)– which is not satisfied iff �(A1, ... , An) is not. C(�)+ and C(�)– are of course not
unique.

The Kowalski notation for a clause C = {¬A1, ...¬Ak,B1, ... , Bl} (Ai , Bj atomic) is
an expression of the form A1, ... , Ak � B1, ... , Bl . We can now establish a correspon-
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648 RICHARD ZACH

Table 1. Clause sets and rules for the usual connectives

Connective cnfs / C(�)+, C(�)– Rules

∧ A ∧ B
{� A;� B}

Γ � Δ, A Γ � Δ, B ∧r

Γ � Δ, A ∧ B
¬A ∨ ¬B
{A,B �}

A,B,Γ � Δ ∧l

A ∧ B,Γ � Δ

∨ A ∨ B
{� A,B}

Γ � Δ, A, B ∨r

Γ � Δ, A ∨ B
¬A ∧ ¬B
{A �;B �}

A,Γ � Δ B,Γ � Δ ∨l

A ∨ B,Γ � Δ

→ ¬A ∨ B
{A � B}

A,Γ � Δ, B →r

Γ � Δ, A→ B
A ∧ ¬B
{� A;B �}

Γ � Δ, A B,Γ � Δ →l

A→ B,Γ � Δ

dence between truth-functional connectives �, their associated clause sets C(�)+ and
C(�)–, and sequent calculus rules for them. If C is a clause set, then the corresponding
set of premises is the set of sequents obtained from the Kowalski notations of the clauses
in C by adding schematic variables for formula sequences Γ, Δ in the antecedent and
succedent. By a slight abuse of notation, we use the same meta-variables Ai for the
schematic formulas in the sequent on the one hand, and the atomic formulas in the
clause set on the other. Each premise has the form Π,Γ � Δ,Λ where the formulas in
Π are the Ai occurring negatively in the respective clause, and those in Λ are the Ai
occurring positively. The�l rule is the rule with the premise set corresponding to C(�)–

and the conclusion �(A1, ... , An),Γ � Δ. The �r rule has a premise set corresponding
to C(�)+ and conclusion is Γ�Δ,�(A1, ... , An). Rules have the general forms

··· Πi ,Γ � Δ,Λi ··· �r

Γ � Δ,�( �A)
and

··· Π′
i ,Γ � Δ,Λ′

i ··· �l

�( �A),Γ � Δ

where the formulas in Πi and Λi in �r correspond to C(�)+ and those in �l to C(�)–.
We call the occurrence of �( �A) in the conclusion of such a rule the principal formula,
the formulas in Πi and Λi (or Π′

i and Λ′
i) the auxiliary formulas, and those in Γ and

Δ the side formulas.
Suppose we have a set X of connectives � with associated �l and �r rules. The

calculus consisting of these rules, the usual structural rules (weakening, contraction,
exchange, cut), and initial sequentsA�A is the classical sequent calculus LX for those
connectives and rules.

Proposition 1. LX with rule pairs for each connective as defined above is sound and
complete.

Proof. Soundness by a standard inductive proof, completeness by the usual
construction of a countermodel from a failed search for a cut-free proof. See
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Table 2. Clause sets and rules for some unusual connectives

Connective cnfs / C(�)+, C(�)– Rule

A� B
A ∧ ¬B
{� A;B �}

Γ � Δ, A B,Γ � Δ
�r

Γ � Δ, A� B

(exclusion)
¬A ∨ B
{A � B}

A,Γ � Δ, B
�l

A� B,Γ � Δ

A | B ¬A ∨ ¬B
{A,B �}

A,B,Γ � Δ |r
Γ � Δ, A | B

(nand)
A ∧ B
{� A;� B}

Γ � Δ, A Γ � Δ, B |l
A | B,Γ � Δ

A ↓ B ¬A ∧ ¬B
{A �;B �}

A,Γ � Δ B,Γ � Δ ↓r

Γ � Δ, A ↓ B

(nor)
A ∨ B
{� A,B}

Γ � Δ, A, B ↓l

A ↓ B,Γ � Δ

A⊕ B (A ∨ B) ∧ (¬A ∨ ¬B)
{� A,B ;A,B �}

Γ � Δ, A, B A,B,Γ � Δ ⊕r

Γ � Δ, A⊕ B

(xor)
(A ∨ ¬B) ∧ (¬A ∨ B)
{A � B ;B � A}

A,Γ � Δ, B B,Γ � Δ, A ⊕l

A⊕ B,Γ � Δ

A→ B/C (¬A ∨ B) ∧ (A ∨ C )
{A �, B ;� A,C}

A,Γ � Δ, B Γ � Δ, A,C →/r
Γ � Δ, A→ B/C

(if then else)
(¬A ∨ ¬B) ∧ (A ∨ ¬C )
{A,B �;C � A}

A,B,Γ � Δ C,Γ � Δ, A →/l
A→ B/C,Γ � Δ

Theorem 3.2 of Baaz et al. (1994) for details. (Note that this proof yields completeness
without the cut rule.) �

When comparing the systems LX with natural deduction systems, it will be useful
to start from a slight variant of LX in which the side formulas are not required to be
identical in the premises. We replace an LX rule

Π1,Γ � Δ,Λ1 ··· Πn,Γ � Δ,Λn �r

Γ � Δ,�( �A)

by

Π1,Γ1 � Δ1,Λ1 ··· Πn,Γn � Δn,Λn �r
c

Γ1, ... ,Γn � Δ1, ... ,Δn,�( �A)

to obtain the sequent calculus with independent contexts LcX.

Proposition 2. LX and LcX are equivalent.

Proof. A proof in LX can be translated into one in LcX by adding contractions (and
exchanges), one in LcX can be translated into a proof in LX by adding weakenings
(and exchanges). �
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650 RICHARD ZACH

§3. Splitting rules. The sequent calculi usually considered differ from the calculi
LX as constructed above in that some of the rules are “split.” This is the case in
particular for the ∨r rule in LK. In this case, we replace the single rule with premise
clause � A,B by two rules, each with a single premise � A or � B . The availability
of split rules is crucial if one wants to consider a variant of the sequent calculus with
one side restricted to at most one formula, and when considering natural deduction
systems, where the conclusion is also likewise restricted to a single formula. In such
systems, we need rules where the premises satisfy the restriction as well.

Suppose we have a rule for�with premise set corresponding to a set of clauses C, and
let C ∈ C be the clause corresponding to a single premise of the rule. We can partition
the clause C into two parts: C = C1 ∪ C2, where C2 = {L1, ... , Lk} and consider the
clause sets Ci = (C \ {C}) ∪ {C1 ∪ {Li}}. We can then consider the variant calculus
LX∗ with the rule corresponding to C replaced by the rules corresponding to all the Ci .

Proposition 3. LX and LX∗ are equivalent.

Proof. We just have to show that an inference based on the rule for C can be simulated
by the rules for Ci and conversely. An inference using Ci can be simulated by an inference
based on C by weakening the premise corresponding toC1 ∪ {Li}with the rest ofC2. In
the other direction, an inference based on C can be simulated by repeated application
of Ci and contracting multiple copies of �(A1, ... , An) in the resulting conclusion
sequent. �

For instance, in the case of ∨r, the constructed rule with premise clauseC = � A,B
can be replaced with the two ∨r rules with premises � A and � B (here C1 = ∅ and
C2 = {A,B}). An inference using ∨r1 with premise Γ � Δ, A can be replaced by

Γ � Δ, A
wr

Γ � Δ, A, B ∨r

Γ � Δ, A ∨ B
An inference using ∨r can be replaced by a proof segment using ∨r1 and ∨r2:

Γ � Δ, A, B ∨r2
Γ � Δ, A,A ∨ B

xr

Γ � Δ, A ∨ B,A ∨r1
Γ � Δ, A ∨ B,A ∨ B

cr

Γ � Δ, A ∨ B

We thus have:

Proposition 4. If LX∗ is obtained from LX by splitting a rule, it is sound and complete
iff LX is.

Corollary 5. If LX is sound and complete, there is a sound and complete LX∗ in
which every premise of every rule has at most one auxiliary formula on the right.

Proof. By successively replacing every rule in which some premise contains more
than one auxiliary formula on the right by the split rules where C2 contains all the
positive clauses of the corresponding premise clause. �

Note that this result does not establish that the calculus obtained from LX∗ by
restricting all sequents to at most one formula on the right proves the same (restricted)
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Table 3. Split rules for some unusual connectives

Connective Rules

A� B
A,Γ � Δ

�l1
A� B,Γ � Δ

Γ � Δ, B
�l2

A� B,Γ � Δ

A | B A,Γ � Δ |r1Γ � Δ, A | B
B,Γ � Δ |r2Γ � Δ, A | B

A ↓ B Γ � Δ, A ↓l1
A ↓ B,Γ � Δ

Γ � Δ, B ↓l2
A ↓ B,Γ � Δ

A⊕ B Γ � Δ, A B,Γ � Δ ⊕r1Γ � Δ, A⊕ B
Γ � Δ, B A,Γ � Δ ⊕r2Γ � Δ, A⊕ B

A,Γ � Δ B,Γ � Δ ⊕l1
A⊕ B,Γ � Δ

Γ � Δ, B Γ � Δ, A ⊕l2
A⊕ B,Γ � Δ

A→ B/C A,Γ � Δ, B Γ � Δ, A →/r1Γ � Δ, A→ B/C
A,Γ � Δ, B Γ � Δ, C →/r2Γ � Δ, A→ B/C

A,B,Γ � Δ Γ � Δ, A →/l1
A→ B/C,Γ � Δ

A,B,Γ � Δ C,Γ � Δ →/l2
A→ B/C,Γ � Δ

sequents as LX. It only shows that for every LX there is at least a candidate calculus
LX∗ where such a restriction would be possible as far as the logical rules are concerned.
The resulting calculus may have different provable sequents. The example of LK and
LJ illustrates this.

The set of rules obtained by splitting a rule of LX more than once may result in
redundant rules, e.g., those where a premise contains an auxiliary formula A on the
left and another premise contains it on the right. For instance, consider the ⊕r rule
from Table 2. Fully splitting the rule would result in four rules:

Γ � Δ, A B,Γ � Δ ⊕r1Γ � Δ, A⊕ B
Γ � Δ, B A,Γ � Δ ⊕r2Γ � Δ, A⊕ B

Γ � Δ, A A,Γ � Δ ⊕r3Γ � Δ, A⊕ B
Γ � Δ, B B,Γ � Δ ⊕r4Γ � Δ, A⊕ B

The two bottom rules are superfluous: the un-split rule can be simulated using the
other two (and contractions):

Γ � Δ, A, B
A � A

A,Γ � Δ, A ⊕r2Γ � Δ, A,A⊕ B
Γ � Δ, A⊕ B,A

B � B
B,Γ � Δ, B A,B,Γ � Δ ⊕r2

B,Γ � Δ, A⊕ B ⊕r1Γ � Δ, A⊕ B,A⊕ B
cr

Γ � Δ, A⊕ B
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652 RICHARD ZACH

Corollary 6. If LX is sound and complete, there is a sound and complete LX∗∗ in
which every premise of every rule has at most one auxiliary formula.

LX∗∗ is a calculus with “fully split” rules. In this case, each premise of a rule
corresponds to a single literal (positive if the auxiliary formula appears on the right,
negative if on the left). A rule then corresponds to a conjunction of literals, and a set of
�r rules to a dnf of �(A1, ... , An) in the atomic formulasAi . Starting from a single �r

rule corresponding to a cnf, the fully split set of rules corresponds to converting the
cnf to a dnf by distributing ∧ over ∨. The fully split rules have the interesting property
that when applied to initial sequents they derive the sequent Γ � Δ,�(A1, ... , An) where
Γ contains Ai iff Ai appears as an auxiliary formula on the right, and Δ contains Ai iff
Ai appears as an auxiliary formula on the left. If ¬ is present, we even get a derivation,
using only ¬l and �r, of Π � �( �A) (which moreover does not contain more than one
formula on the right), where Π = Γ,¬Δ. The set of all Π so obtained exactly describes
the truth value assignments under which �( �A) is true.

Suppose now we have a sequent calculus with the usual structural rules but only
right rules for a connective �. We can determine sound and complete left rules for �
by reverse engineering the rules given. Each �r rule determines a set of clauses, which
is equivalent to a conjunctive normal form for �(A1, ... , An) in the arguments Ai , ...,
An. If we have more than one �r rule, consider the disjunction of the corresponding
cnfs. Its negation also has a cnf, which yields an �l rule which together with the
�r rules is sound and complete, as is the calculus resulting from the given �r rules
together with any rules obtained from �l by splitting.

§4. Multi-conclusion natural deduction rules. A sequent calculus LX is straight-
forwardly and systematically related to a sequence-conclusion “sequent-style” natural
deduction calculus NsmX as follows. In NsmX, the antecedent of a sequent Γ � Δ is a
multiset, not a sequence as in LX. The axioms of NsmX are initial sequentsA � A. Every
�r rule is also a rule in NsmX, an introduction rule for �. Every �l rule corresponds
to a general elimination rule with the same premises as �l (the minor premises),
an additional premise Γ � Δ,�(A1, ... , An) (the major premise) and the conclusion
Γ � Δ, where Γ and Δ are the same schematic context formulas as in the premises. As
an example, consider the conditional, →. cnfs for A→ B and ¬(A→ B) are

A→ B iff ¬A ∨ B
¬(A→ B) iff A ∧ ¬B

These correspond to the introduction and elimination rules

A,Γ � Δ, B →i

Γ � Δ, A→ B
Γ � Δ, A→ B Γ � Δ, A B,Γ � Δ →e

Γ � Δ

The formulas in the antecedent of a sequent in an NsmX derivation are called open
assumptions. If a schematic variable A occurs in the antecedent of a premise in an
elimination rule, it does not occur in the antecedent of the conclusion: the open
assumption A is then said to be discharged by the rule.

Any proof in LX can be translated into a proof in NsmX. A�l inference translates into
a �e inference with major premise �(A1, ... , An),Γ � Δ,�(A1, ... , An). This premise
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Table 4. Multi-conclusion natural deduction rules for some unusual connectives

Connective Intro/elim rule

A� B
Γ1 � Δ1, A B,Γ2 � Δ2

�i

Γ1,Γ2 � Δ1,Δ2, A� B

Γ0 � Δ0, A� B A,Γ1 � Δ1, B
�e

Γ0,Γ1 � Δ0,Δ1

A | B A,B,Γ1 � Δ1 |i
Γ1 � Δ1, A | B

Γ0 � Δ0, A | B Γ1 � Δ1, A Γ2 � Δ2, B |e
Γ0,Γ1,Γ2 � Δ0,Δ1,Δ2

A ↓ B A,Γ1 � Δ1 B,Γ2 � Δ2 ↓i

Γ1,Γ2 � Δ1,Δ2, A ↓ B
Γ0 � Δ0, A ↓ B Γ1 � Δ2, A, B ↓e

Γ0,Γ1 � Δ0,Δ1

A⊕ B Γ1 � Δ1, A, B A,B,Γ2 � Δ2 ⊕i

Γ1,Γ2 � Δ1,Δ2, A⊕ B
Γ0 � Δ0, A⊕ B A,Γ1 � Δ1, B B,Γ2 � Δ2, A ⊕e

Γ0,Γ1,Γ2 � Δ0,Δ1,Δ2

A→ B/C A,Γ1 � Δ1, B Γ2 � Δ2, A,C →/i
Γ1,Γ2 � Δ1,Δ2, A→ B/C

Γ0 � Δ0, A→ B/C A,B,Γ1 � Δ1 C,Γ2 � Δ2, A →/e
Γ0,Γ1,Γ2 � Δ0,Δ1,Δ2

itself can be derived from �(A1, ... , An) � �(A1, ... , An) by weakening and exchanges
alone. Conversely, any proof in NsmX can be translated into an LX proof. An �e

inference is translated into a �l inference (with the minor premises as premises of the
rule), followed by a cut with the proof ending in the major premise.

The sequent-style natural deduction calculus NsmX corresponds to a natural
deduction system in which proofs are trees of sequences of formulas.1 Whenever there
is a derivation of Δ from undischarged assumptions Γ there is a derivation of Γ � Δ in

1 Such a system was first introduced by von Kutschera (1962), for a language with Sheffer stroke
and universal quantifier as the only primitives; he did not investigate normal forms. Boričić
(1985) gave a system for the usual primitives and provided explicit translations from and to
the sequent calculus and a normal form theorem. Baaz et al. (1993) independently obtained
generalized results of the same type for arbitrary n-valued connectives and quantifiers.
Cellucci (1992) proved normalization for a classical system including the ε-operator. Parigot
(1992b) gave a system in which conclusions are sets of “named” formulas, and proved strong
normalization using the ��-calculus. The system is related to the multiple-conclusion calculi
of Shoesmith & Smiley (1978), although their proofs have a different structure. In their
systems, proofs are graphs of formulas, and a rule may have more than one conclusion
formula, resulting in proofs that are not trees. Our system has trees of sequents with more
than one formula in the succedent, but naturally yields a system of trees of sequences or
multi-sets of formulas, and every rule has a single sequence or multi-set of formulas as
conclusion.
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NsmX. Conversely, if NsmX proves Γ � Δ then there is a derivation in NmX of Γ′ � Δ with
Γ′ ⊆ Γ. (Note that in natural deduction there is no equivalent to the left weakening
rule, hence in general we can only get Γ′ ⊆ Γ.)

In the context of natural deductions (especially when considering the Curry–
Howard isomorphism) it is often necessary and helpful to consider a version of
natural deduction in which one has more control over which elimination inferences
discharge which assumptions, and to have book-keeping information for this in the
derivations themselves. A corresponding sequent-style natural deduction calculus then
will have labels on the formulas occurring in the antecedent (the assumptions), and the
antecedent is now considered a set, not a multi-set, of labelled formulas. The antecedent
of a sequent is also often called the context. The wl and cl rules are removed. Since
the contexts are sets, contraction on the left is implicit. For simplicity we will also
consider the consequent to be a multi-set of formulas (i.e., exchanges are implicit and
the xr rule is removed). In order to make the comparison with type systems easier, we
will use variables x as these labels, and write a labelled assumption formula as x : A.
An initial sequent then is a sequent of the form

x : A�A

We replace the introduction and elimination rules by rules in which the side formulas
are not required to be shared. In other words, we replace a rule

··· Πi ,Γ � Δ,Λi ··· �i

Γ � Δ
by

··· Πi ,Γi � Δi ,Λi ··· �i

Γ1, ... ,Γn � Δ1, ... ,Δn

Since the wl rule is removed, we must allow vacuous discharge of assumptions: a
rule application is correct even if the discharged assumptions do not all appear in the
premises. In other words, an application of a logical rule

Γ0 � Δ,�( �A) Π1,Γ1 � Δ1,Λ1 ··· Πn,Γn � Δn,Λn �e : l
Γ0, ... ,Γn � Δ1, ... ,Δn

may discharge any number of assumptions mentioned in the schematic form of the
rule, including zero. The labels of assumptions discharged in an application are listed
with the rule. Formulas instantiating the same schematic variable must have the same
label. For instance, the →e rule now becomes:

Γ0 � Δ0, A→ B Γ1 � Δ1, A x : B,Γ2 � Δ2 →e : x
Γ0,Γ1,Γ2 � Δ0,Δ1,Δ2

A correct derivation is a tree of sequents starting in initial sequents in which
every inference is correct according to the new definition. We denote the new
system NlmX.

Lemma 7. In any derivation � in NlmX, we can replace a label x uniformly by another
label y not already used in the derivation, and obtain a correct derivation �[y/x].
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Proof. By induction on the height of the derivation. �
Proposition 8. If � is an NlmX derivation of Γ � Δ, there is a derivation in NsmX of

Γ′ � Δ where Γ′ is Γ with labels removed.

Proof. By induction on the height of �. Simply remove labels, adding cl, xl, and xr

inferences where required. For each inference in � in which not all labelled formulas
x : A are discharged, add a wl inference to the corresponding premise before applying
the rule. �

Proposition 9. If � is an NsmX derivation of Γ � Δ, there is a derivation �′ in NlmX of
Γ′ � Δ where if x : A is a labelled occurrence of A in Γ′, Γ contains A.

Proof. In a first pass, we assign sets of labels to the formulas in the contexts in �
inductively:

If A � A is an initial sequent, replace it with {x} : A � A for some label x.
If A is the weakened formula in a wl inference, assign ∅ to it.
If label sets l1, and l2, both �= ∅, have been assigned to the auxiliary formulasA,A in

a cl inference, replace every label set l1 and l2 in the derivation ending in the premise
by the set l1 ∪ l2 and assign l1 ∪ l2 to A in the conclusion.

In all other inferences, first uniformly replace labels throughout the derivations
ending in the premises to ensure that the label sets appearing in any two derivations
are disjoint. Then assign the same label sets to the formulas in the conclusion as the
corresponding formulas in the premises.

If l, l ′ are two different label sets in the result, l ∩ l ′ = ∅. We may assume that the
labels xi are linearly ordered; let min(l) be the least label in l in this ordering.

We define the translation by induction on the height of the labelled derivation �.
The translation has the following property: if the labelled � ends in Γ � Δ and its
translation �′ ends in Γ′ � Δ′, then (a) if l : A ∈ Γ with l �= ∅, then min(l) : A ∈ Γ′,
and (b) if x : A ∈ Γ′ then for some l, l : A ∈ Γ with x = min(l), and (c) Γ′ contains
eachx : A at most once. In each step below, it is easily verified that (a), (b), and (c) hold.

If � is just an initial sequent l : A � A, �′ is min(l) : A � A.
If � ends in a wr, cr, or cut inference, apply wr, cr, or cut, respectively, to the

translation of the premise.
If � ends in xr, or in a wl or cl inference with principal or weakened formula l : A,

�′ is the translation of its premise (i.e., we remove left weakenings and contractions).
In the case of cl, by induction hypothesis, the antecedent of the translation of the
premise already contains min(l) : A at most once.

Suppose � ends in a logical inference,

Γ0 � Δ,�( �A) Π1,Γ1 � Δ1,Λ1 ··· Πn,Γn � Δn,Λn �e

Γ0,Γ1, ... ,Γn � Δ0,Δ1, ... ,Δn

Let �′i be the translations of the derivations ending in the premises. Each �′i proves
Π′
i ,Γ

′
i � Δi ,Λi where Π′

i is a set of labelled formulas. For each l : A ∈ Πi , min(l) : A ∈
Π′
i iff l �= ∅, and if x : A ∈ Π′

i then x = min(l). If different labelled formulas l : A and
l ′ : A appear in Πi and Πj but instantiate the same schematic formula of the rule,
then min(l) : A and min(l ′) : A appear in Π′

i and Π′
j . Replace min(l ′) : A in the entire

derivation �′j ending in the second premise by min(l) : A everywhere it occurs. In this
way we obtain �′′i in which labelled formulas x : Awhich instantiate the same schematic

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S1755020320000015
Downloaded from https://www.cambridge.org/core. IP address: 23.17.153.152, on 04 Nov 2021 at 13:56:29, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S1755020320000015
https://www.cambridge.org/core


656 RICHARD ZACH

variable have the same label. Adding�e to the resulting �′′i results in a correct inference,
if we label the inference with the list of labels appearing in the Πi . Note that when
�e discharges a formula A which is obtained by weakening, it was originally labelled
by ∅. It either still was labelled with ∅ at the end, or its label set was combined with that
of another occurrence of A with which it was later contracted. In the first case it no
longer appears in the premise of the translated derivation, the corresponding inference
thus vacuously discharges A.

The case of �i is treated the same way. �

§5. Specialized elimination rules. In order to get the familiar elimination rules for
natural deduction, the general elimination rules obtained from the �l rule must be
simplified. For instance, the general elimination rule for → based on →l is

Γ � Δ, A→ B Γ � Δ, A B,Γ � Δ →e

Γ � Δ

We can obtain a specialized rule by removing a premise which only discharges a single
assumption, and instead add the discharged assumption to the conclusion. In the case
of →, for instance, we observe that ifB ∈ Δ, the right minor premiseB,Γ � Δ contains
the initial sequent B � B as a subsequent and is thus always derivable. The additional
formula B is then of course also part of Δ in the conclusion. The simplified rule →e

′ is
the familiar modus ponens rule:

Γ � Δ, A→ B Γ � Δ, A
→e

′
Γ � Δ, B

In general, a premise of �e of the form Ai ,Γ � Δ can be removed while Ai is added
to the right side of the conclusion to obtain a simplified rule �e

′. For if Π,Γ � Δ,Λ is
derivable (the general form of any of the premises), so is Π,Γ � Δ, Ai ,Λ by wr and xr.
The sequent corresponding to the removed premise is Ai ,Γ � Δ, Ai which is derivable
from the initial sequent Ai � Ai by weakenings and exchanges alone. E.g.,

Γ � Δ,�(A1, ... , An) ··· Πi ,Γ � Δ,Λi ···
�e

′
Γ � Δ, Ai

turns into

Γ � Δ,�(A1, ... , An)

Γ � Δ, Ai ,�(A1, ... , An) ···
Πi ,Γ � Δ,Λi
Πi ,Γ � Δ, Ai ,Λi ... ···

Ai � Ai
Ai ,Γ � Δ, Ai �e

Γ � Δ, Ai

Thus, any inference using the specialized rule �e
′ can be replaced by the original

rule �e. Conversely, if the premises of the original rule are derivable, the specialized
rule applied to the premises still present in the specialized rule proves Γ � Δ, Ai . The
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Table 5. Some specialized and split elimination rules for some unusual connectives

Connective Intro/elim rule

A� B
Γ0 � Δ0, A� B Γ1 � Δ1, B

�e1
Γ0,Γ1 � Δ0,Δ1
Γ0 � Δ0, A� B

�e2
Γ0 � Δ0, A

A⊕ B Γ0 � Δ0, A⊕ B ⊕e1Γ0 � Δ0, A, B

Γ0 � Δ0, A⊕ B Γ1 � Δ1, B Γ2 � Δ2, A ⊕e2Γ0,Γ1,Γ2 � Δ0,Δ1,Δ2

A→ B/C Γ0 � Δ0, A→ B/C C,Γ2 � Δ2, A →/e1Γ0,Γ2 � Δ0,Δ2, B

Γ0 � Δ0, A→ B/C A,Γ1 � Δ1 →/e2Γ0,Γ1 � Δ0,Δ1, C

removed premise of the original rule isAi ,Γ � Δ. Using cut and contraction, we obtain
a derivation of Γ�Δ. E.g.,

Γ � Δ,�(A1, ... , An) ··· Πi ,Γ � Δ,Λi ··· Ai ,Γ � Δ �e

Γ � Δ

turns into

Γ � Δ,�(A1, ... , An) ··· Πi ,Γ � Δ,Λi ···
�e

′
Γ � Δ, Ai Ai ,Γ � Δ

cut

Γ,Γ � Δ,Δ

Γ � Δ

Since we allow multiple formulas in the succedent, this generalizes to multiple
premises that only discharge single assumptions. For instance, we can simplify ∨e

Γ � Δ, A ∨ B A,Γ � Δ B,Γ � Δ ∨e

Γ � Δ

to get
Γ � Δ, A ∨ B

∨e
′

Γ � Δ, A, B

Note that the simulation of the original general rule by the specialized elimination rule
requires a cut. It should thus not surprise that general elimination rules are proof-
theoretically better behaved than the specialized rules.

It is also possible using the same idea to specialize rules by removing premises which
only contain a single formula in the succedent. In that case, the corresponding formula
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658 RICHARD ZACH

must be added to the antecedent of the conclusion. Here is an example. The general |e
rule

Γ0 � Δ0, A | B Γ1 � Δ1, A Γ2 � Δ2, B |e
Γ0,Γ1,Γ2 � Δ0,Δ1,Δ2

specializes to the two rules

Γ0 � Δ0, A | B Γ2 � Δ2, B |e′1A,Γ0,Γ2 � Δ0,Δ2

Γ0 � Δ0, A | B Γ1 � Δ1, A |e′2B,Γ0,Γ1 � Δ0,Δ1

and further to the single rule

Γ0 � Δ0, A | B |e′
A,B,Γ0 � Δ0

Sequent-style natural deduction is closely connected to standard natural deduction,
in which assumptions are not collected in the antecedent of a sequent but are simply
formulas at the top of a proof tree, possibly marked as discharged. In the standard
formalism, such a specialized rule is difficult to accommodate, since it would amount
to a rule that allows one to add undischarged assumptions to the proof tree which
don’t already occur in the tree.

The restriction to a single formula in the antecedent of the specialized premise
is essential. We cannot specialize a rule by removing a premise which discharges
two assumptions by putting both assumptions into the succedent of the conclusion.
The reason is that from the conclusion Γ � Δ, Ai , Aj we cannot recover Γ � Δ by
cuts together with the removed premise Ai ,Aj,Γ � Δ. We can, however, replace the
rule by a set of specialized rules, one for each assumption formula discharged in the
specialized premise. This corresponds exactly to first splitting the �l rule, considering
the generalized �e rules based on these split rules, and then specializing the resulting
rules as before. Consider for example the rules for ∧. The standard ∧l rule has the
single premise A,B,Γ � Δ. It corresponds to the general elimination rule

Γ � Δ, A ∧ B A,B,Γ � Δ ∧e

Γ � Δ

The rule ∧l can be split into two ∧l rules with premises A,Γ � Δ and B,Γ � Δ,
respectively. The corresponding general ∧e rules are

Γ � Δ, A ∧ B A,Γ � Δ ∧e1
Γ � Δ

and
Γ � Δ, A ∧ B B,Γ � Δ ∧e2

Γ � Δ

which can be specialized to the familiar two ∧ elimination rules:

Γ � Δ, A ∧ B ∧e
′
1Γ � Δ, A

and
Γ � Δ, A ∧ B ∧e

′
2Γ � Δ, B

It is possible to generate a general elimination rule from a specialized one by reverse-
engineering the specialization process. Suppose we have a specialized rule �e

′:
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Γ � Δ,�( �A) ··· Πi ,Γ � Δ,Λi ···
�e

′
Γ � Δ, Ai

Then the corresponding general elimination rule has the same premises as �e
′ plus an

additional premise Ai ,Γ � Δ, and the conclusion leaves out the Ai :

Γ � Δ,�( �A) ··· Πi ,Γ � Δ,Λi ··· Ai ,Γ � Δ �e

Γ � Δ

Since �e
′ is the result of �e specialized in the premise Ai ,Γ � Δ, the two rules are

equivalent.

§6. Cut elimination and substitution. Gentzen’s cut elimination method proceeds
by permuting inference rules with the cut rule until there is a topmost cut where the
cut formula is introduced in both premises of the cut by a right and a left inference,
respectively. Such topmost cuts can then be reduced to cuts with cut formulas of a
lower degree. We’ll now show that the fact that this is possible is no accident; in fact it
holds whenever we have a calculus obtained by our procedure. The key fact here is that
the original clause sets C(�)+ and C(�)– are not jointly satisfiable. As an unsatisfiable
clause set it has a resolution refutation, which can be immediately translated into a
derivation of the empty sequent from the sequents corresponding to the clauses in
C(�)+ ∪ C(�)–.

The same is true for clause sets corresponding to split rules, since each clause in
them is a subset of a clause in C(�)+ ∪ C(�)–.

Theorem 10. The cut elimination theorem holds for LX.

Proof. For a detailed proof, see Theorem 4.1 of Baaz et al. (1994). We give a sketch
only. As in Gentzen (1934), we observe that the cut rule is equivalent to the mix rule,

Γ � Δ Θ � Ξ
mix : A

Γ,Λ∗ � Θ∗,Ξ

where Δ∗ and Θ∗ are Δ and Ξ, respectively, with every occurrence of the mix formula A
removed. We show that a proof with a single mix inference as its last inference can be
transformed into one without mix. The result then follows by induction on the number
of applications of mix in the proof.

We introduce two measures on proofs ending in a single mix: The degree is the degree
of the mix formula A. The left rank is the maximum number of consecutive sequents
on a branch ending in the left premise that contains the mix formula A on the right,
counting from the left premise; and similarly for the right rank. The rank of the mix

is the sum of the left and right rank. The proof then proceeds by double induction on
the rank and degree. We distinguish cases according to the inferences ending in the
premises of the mix inference and show how, in every case, either that the degree of the
mix can be reduced, or else that there is a proof using a mix of the same degree but of
lower rank.

The first case occurs when the mix formula A appears only once in Δ and Θ and as
the principal formula of a �r inference that ends in the left premise Γ � Δ and of a �l
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inference that ends in the right premise Θ � Ξ. In all other cases, the mix inference is
switched with the last inference on the left or right side, thus reducing the rank.

In the critical first case, the proof ends in

··· Πi ,Γ � Δ,Λi ··· �r

Γ � Δ,�( �A)

··· Π′
i ,Θ � Ξ,Λ′

i ···
�l

�( �A),Θ � Ξ
mix : �( �A)Γ,Θ � Δ,Ξ

Remove the side formulas Γ, Δ, Θ, Ξ from the premises and consider the set of sequents
Πi � Λi and Π′

i � Λ′
i . These are just the clauses C(�)+ and C(�)–, which together form

an unsatisfiable set of Kowalski clauses. A resolution refutation of this clause set yields
a derivation of the empty sequent from these sequents using only mix inferences on
the Ai . This derivation in turn, by adding the side formulas Γ, Δ, Θ, Ξ appropriately,
and adding some exchanges and contractions at the end, yields a derivation of the
sequent Γ,Θ � Δ,Ξ. The remaining mix inferences are all of lower degree, and so the
induction hypothesis applies.

In the other cases we show that the end-sequent has a cut-free derivation by appealing
to the second clause of the induction hypothesis, namely, that proofs ending in mix

inferences of lower rank can be transformed into mix-free proofs. For instance, suppose
the right premise ends in �l but its principal formula �( �A) is not the only occurrence
of the mix formula in the antecedent of the right premise:

Γ � Δ

··· Π′
i ,Θ � Ξ,Λ′

i ···
�l

�( �A),Θ � Ξ
mix : �( �A)Γ,Θ∗ � Δ∗,Ξ

We may assume that the mix formula �( �A) does not occur in Γ, since otherwise we
can obtain a mix-free proof of the end-sequent from the right premise of the mix using
only weakening and exchanges.

If we now apply mix to the left premise and to each of the premises of the�l inference
directly we have:

Γ � Δ Π′
i ,Θ � Ξ,Λ′

i
mix : �( �A)

Γ,Π′
i ,Θ

∗ � Δ∗,Ξ,Λ′
i

Since the subproof leading to the premise on the right no longer contains the �l

inference, the right rank is reduced by 1, and so the induction hypothesis applies. Each
of these derivations can be transformed into a mix-free derivation. We can apply �l

and mix again:

Γ � Δ

···
Γ,Π′

i ,Θ
∗ � Δ∗,Ξ,Λ′

i
xl

Π′
i ,Γ,Θ

∗ � Δ∗,Ξ,Λ′
i ···

�l

�( �A),Γ,Θ∗ � Δ∗,Ξ
mix : �( �A)Γ,Γ,Θ∗ � Δ∗,Δ∗,Ξ

The right rank of this mix is 1 since �( �A) does not occur in Π′
i ,Γ,Θ

∗, so the rank
is lower than that of the original mix and the induction hypothesis again applies:
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Γ,Γ,Θ∗ � Δ∗,Δ∗,Ξ has a proof without mix. We can obtain the original end-sequent
Γ,Θ∗ � Δ∗,Ξ from Γ,Γ,Θ∗ � Δ∗,Δ∗,Ξ by exchanges and contractions. �

To illustrate the use of resolution refutations in the first case, consider a proof that
ends in

Γ � Δ, A Γ � Δ, B ∧r

Γ � Δ, A ∧ B
A,B,Θ � Ξ ∧l
A ∧ B,Θ � Ξ

mix : A ∧ B
Γ,Θ � Δ,Ξ

The corresponding set of Kowalski clauses is

�A, �B, A,B �
(i.e., {A}, {B}, {¬A,¬B}). A resolution refutation is

� B
� A A,B �

B �
�

to which we add the side formulas appropriately, and exchanges and contraction
inferences at the end, to obtain:

Γ � Δ, B
Γ � Δ, A A,B,Θ � Ξ

mix

Γ, B,Θ � Δ,Ξ
mix

Γ,Γ,Θ � Δ,Δ,Ξ

Γ,Θ � Δ,Ξ

In the natural deduction system NsmX, the cut rule can also be eliminated. In this
case, however, the proof is much simpler than for LX. In fact, in NsmX the cut rule
simply corresponds to substituting derivations for assumptions. Since NsmX has no
rules which introduce a formula in the antecedent of a sequent in a derivation, every
formula in the antecedent is either weakened, or it stems from an initial sequent.
Whenever it is weakened, we can derive the conclusion of the cut inference from the
premise of the weakening inference already. If it stems from an initial sequent, we can
replace the initial sequent by the derivation ending in the left premise, and adding the
context formulas Γ and Δ to the antecedent and succedent of every inference below it,
adjusting any inferences with weakenings as necessary.

Suppose � is a derivation of Γ � Δ, A and �′ is a derivation ofA,Π � Λ, and suppose
that neither � nor �′ contains a cut. We can define the substitution �′[�/A] with end
sequent Π,Γ � Δ,Λ recursively as follows. We distinguish cases according to the last
inference of �′:

1. �′ is an initial sequent A � A. Then Π = ∅, Λ = A, and �′[�/A] is �.
2. �′ is an initial sequent B � B , but B �= A. Then �′[�/A] is

B � B
B,Γ � Δ, B

3. �′ ends in a wl. The weakening formula is A, and the deduction ending in the
premise is �′′ : Π � Λ. Let �′[�/A] be
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662 RICHARD ZACH

�′′

Π � Λ
Π,Γ � Δ,Λ

4. �′ ends in any other rule: Then �′[�/A] is obtained by substituting � for A in
each of the premises, and then applying the same rule. It is straightforward to
verify that the result is a correct derivation of Π,Γ � Δ,Λ. Note in particular
that in none of the remaining rules of NsmX can A be a principal formula in the
antecedent.

Proposition 11. The cut rule can be eliminated from derivations in NsmX.

Proof. By induction on the number of cut inferences in a derivation �. If there are
no cuts in �, there is nothing to prove. Suppose � contains a cut inference; pick an
uppermost one. Replace the subderivation

�′

Γ � Δ, A

�′′

A,Π � Λ
cut

Γ,Π � Δ,Λ

by
�′′[�′/A]

Π,Γ � Δ,Λ

Γ,Π � Δ,Λ �

Substitutions can similarly be defined for NlmX, the variant of NsmX without left
weakening and contraction in which antecedent formulas are labelled. Suppose �
and �′ are NlmX derivations without labels in common, without cut, and � ends in
Γ � Δ, A and �′ ends in x : A,Π � Λ. We define a substituted translation �′[�/x : A] of
Γ′,Π � Δ,Λ with Γ′ ⊆ Γ.

1. �′ is an initial sequent x : A � A. Then Λ = {A}. Let �′[�/x : A] be � plus wr

to obtain a derivation of Γ � Δ, A.
2. �′ is an initial sequent y : B � B , but B �= A or x �= y. Then �′[�/A] is �′ plus

wr to obtain a derivation of Π � Δ, B .
3. �′ ends in any other rule: Then �′[�/x : A] is obtained by substituting � for x : A

in each of the premises, and then applying the same rule. If the rule discharged
an assumption x : A no longer present in the antecedent of the respective
substituted premise, in the resulting inference the corresponding discharge is
vacuous and the label y removed from the list of discharged labels.

It is straightforward to verify that the result is a correct derivation of Γ′,Π � Δ,Λ.

Proposition 12. The cut rule can be eliminated from derivations in NlmX.

Proof. By renaming the labels, we can guarantee that the labels in the derivation of
the premises are disjoint. �

§7. Normalization for multi-conclusion natural deduction. The cut elimination
theorem in NsmX and NlmX is, as we have seen, simply the result that derivations of a
conclusion involving a formula A may be substituted for assumptions of that formula.
In the context of natural deduction, the more interesting result is that every derivation
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reduces, via a sequence of local reduction steps, to a normal form. A derivation is
in normal form if it involves no “detours,” i.e., no introductions of a formula by �i

followed by eliminations of the same formula by �e.
We prove the normalization result for NlmX without cut. Since conclusions are now

multi-sets of formulas, the situation vis-à-vis detours in derivations is more complicated
than in the single-conclusion case. Specifically, in a single-conclusion derivation any
sequence of consecutive sequents beginning with an �i and ending in an �e inference
is a “detour,” i.e., a maximum segment. No two such segments can overlap, and the
beginning and end of any segment is uniquely determined. In the multi-conclusion case,
segments can overlap, i.e., it is possible to have sequences of sequents in which a formula
�( �A) is introduced, then another �( �B) is introduced, then �( �A) is eliminated, and
finally �( �B) is eliminated. The presence of the cr rule adds further complications: a
single�e inference can count as the end-point of more than one maximum segment.2 In
order to deal with these complications, we must track the specific formula occurrences
introduced and later eliminated in the definition of maximal segments.

Definition 13. A maximal segment in a cut-free derivation � is a sequence of sequents
S1, ..., Sk and of occurrences B1, ..., Bk of �( �A) in the succedents of S1, ..., Sk ,
respectively, with the following properties.

1. S1 is the conclusion of a �i or wr inference with principal formula B1 = �( �A).
2. Si is a premise of an inference, Si+1 its conclusion, and Bi+1 is the occurrence of

�( �A) corresponding toBi in Si . Specifically,Bi+1 is a side formula ifBi is, or the
principal formula of cr ifBi is one of the formula occurrences being contracted.

3. Sk is the major premise of a �e inference with principal formula occurrence
Bk = �(A1, ... , An).

A derivation is normal if it contains no maximal segments.

The formula �( �A) is the maximal formula of the segment. The degree of the segment
is the degree of �( �A), i.e., the number of logical operators in �( �A). The length of the
segment is k.

Note that although the principal formula of a �e inference may be the last formula
occurrence of more than one maximal segment (if it passes through a cr inference),
any principal formula occurrence of �i is the first formula of at most one maximal
segment. Since we are dealing with multisets of formulas, which formula occurrence
in the conclusion of a rule corresponds to which formula occurrence in which premise
is underdetermined. We could make this precise by introducing labels or moving to a
calculus of sequences in which it is determined; for simplicity we assume that we have
picked a way to associate corresponding formula occurrences in the derivation we start
from and keep this association the same throughout the transformation.

Theorem 14. Any cut-free derivation in NlmX normalizes, i.e., there is a sequence of local
proof transformations which ends in a normal derivation.

Proof. Letm(�) be the maximal degree of segments in �, and let i(�) be the number
of segments of maximal degree m(�). We proceed by induction on (m(�), i(�)).

We first ensure that at least one suitable segment of maximal degree is of length 1.
There must be a segment S1, ..., Sk with maximal formula �(A1, ... , An) of degree

2 The proof of Cellucci (1992) does not consider this complication.
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664 RICHARD ZACH

m(�) with the following properties. (a) No premise of the �i or wr rule with S1 as
conclusion lies on or below a segment of degreem(�). (b) No minor premise of the �e

rule of which Sk is the major premise lies on or below a segment of degreem(�). If the
length k = 1 we are done. Otherwise, we decrease the length of this maximal segment.

We consider cases according to the rule of which Sk is the conclusion. Since the
segment is of length > 1, the formula occurrence Bk = �( �A) is not the principal
formula of an �i or wr inference. In each remaining case, this last inference and the
following �e inference can be permuted and the length of the segment considered
reduced.

1. The rule is wr, but Bk is not the weakened formula. Then replace the inference

Γ0 � Δ0,�( �A)
wr

Γ0 � Δ0, A,�( �A) ... �e

...Γi ... � ...Δi ... , A
by

Γ0 � Δ0,�( �A) ... �e

...Γi ... � ...Δi ...
wr

...Γi ... � ...Δi ... , A

The length of any segment which ends with the �e inference, and any segment
which begins with the wr inference have decreased, and others are unchanged.
No new maximal segments are added.

2. The rule is cr with the principal formula not Bk = �( �A). Then replace the
inferences

Γ0 � Δ0, A,A,�( �A)
cr

Γ0 � Δ0, A,�( �A) ... �e

...Γi ... � ...Δi ... , A
by

Γ0 � Δ0, A,A,�( �A) ... �e

...Γi ... � ...Δi ... , A,A
cr

...Γi ... � ...Δi ... , A

3. The rule is cr and the principal formula is Bk = �( �A). The segment ends in:

Γ0 � Δ0,

B′
k′–1︷ ︸︸ ︷

�( �A),

Bk–1︷ ︸︸ ︷
�( �A)

cr

Γ0 � Δ0, B
′
k′ = Bk = �( �A) ··· Πi ,Γi � Δi ,Λi ···

�e

...Γi ... � ...Δi ...

where only one of the occurrences of �( �A) in the premise of cr is the maximal
formula occurrenceBk–1 of the segment. (The other occurrence of�( �A) possibly
belongs to another maximal segment ending in the �e inference, say, it is B ′

k′–1
in some segment consisting of B ′

1, ..., B ′
k′ .) Replace these inferences by

Γ0 � Δ0,

B′
k′–1︷ ︸︸ ︷

�( �A),

Bk–1︷ ︸︸ ︷
�( �A) ··· Πi ,Γi � Δi ,Λi ··· �e

...Γi ... � ...Δi , ... , B ′
k′ = �( �A) ··· Πi ,Γi � Δi ,Λi ··· �e

...Γi ... � ...Δi ,Δi ...

...Γi ... � ...Δi ...

This changes maximal segments as follows: The segment under consideration
now ends at Bk–1, and has therefore decreased in length. Any segment ending
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CUT ELIMINATION AND NORMALIZATION FOR GENERALIZED CALCULI 665

in the original �e inference which contained the other contracted formula
occurrence B ′

k′–1 now ends at the lower �e inference, and is of the same
length (k′) as before. Because of property (b) of the topmost segment under
consideration, there are no segments of maximal degree passing through or lying
above the minor premises of the �e rule, and so the duplication of the subproofs
ending in these minor premises has no effect on the number of segments of
maximal degree.

4. The rule is a �i rule, with a principal formula �( �C ), but the principal formula
�( �C ) is not Bk–1 = �( �A). Exactly one of the premises must belong to the
segment being considered, without loss of generality assume the first is. Then
that premise is of the form Π′

1,Γ
′
1 � Δ′

1, Bk–1 = �( �A),Λ1. Suppose the other
premises of the �i inference are the sequents Π′

j ,Γ
′
j � Δ′

j ,Λ
′
j (the formulas

in Π′
i and Λ′

i are the auxiliary formulas). The conclusion of the inference is
Γ′

1, ... ,Γ
′
n � Δ′

1, ... ,Δ
′
n, Bk = �( �A),�( �C ).

Let Πi ,Γi � Δi ,Λi be the minor premises of the �e rule. If we let

Γ = Γ1, ... ,Γn
Γ′ = Γ′

1, ... ,Γ
′
m

Δ = Δ1, ... ,Δn
Δ′ = Δ′

1, ... ,Δ
′
m

the last inference in the segment has the following form:

Π′
1,Γ

′
1 � Δ′

1,

Bk–1︷ ︸︸ ︷
�( �A),Λ′

1 ··· Π′
j ,Γ

′
j � Δ′

j ,Λ
′
j ···

�i

Γ′ � Δ′, Bk = �( �A),�( �C ) ··· Πi ,Γi � Δi ,Λi ··· �e

Γ,Γ′ � Δ,Δ′,�( �C )

where ...Π′
j ,Γ

′
j � Δ′

j ,Λ
′
j ... are the premises of the �i inference other than the

first. Replace the inferences with

Π′
1,Γ

′
1 � Δ′

1,

Bk–1︷ ︸︸ ︷
�( �A),Λ′

1 ··· Πi ,Γi � Δi ,Λi ··· �e

Π′
1,Γ

′
1,Γ � Δ′

1,Δ,Λ
′
1 ··· Π′

j ,Γ
′
j � Δ′

j ,Λ
′
j ···

�i

Γ,Γ′ � Δ,Δ′,�( �C )

5. The last inference is �e. This is treated as the previous one, except that we now
have to distinguish cases according to whether the segment runs through the
major premise or one of the minor premises. Again, since �( �A) must occur
in the context of one of the premises, the �e rule can first be applied to that
premise, and the �e rule then to its original premises, with the one premise
belonging to the segment replaced with the conclusion of the �e rule.

Now consider a topmost maximal segment of length 1. We have that S1 = Sk is both
the conclusion of a �i or wr rule and the major premise of a �e rule with B1 = Bk the
principal formula. In the second case, the segment in question has the form
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Γ0 � Δ0
wr

Γ0 � Δ0,�( �A) ... Πi ,Γi � Δi ,Λi ... �e

Γ0, ...Γi ... � Δ0, ...Δi ...

This segment can be replaced by the premise of the wr rule followed by wr to add the
Δi on the right:

Γ0 � Δ0
wr

Γ0 � Δ0, ...Δi ...

Any inferences below which discharge assumptions in Γ1, ..., Γn are now vacuous.
The first case is the crucial one. The segment is of the form

... Πi ,Γi � Δi ,Λi ... �i

...Γi ... � ...Δi ... ,�( �A) ... Π′
j ,Γ

′
j � Δ′

j ,Λ
′
j ...

�e

...Γi ...Γ′
j ... � ...Δi ...Δ′

j ...

As in the cut elimination theorem, the premises Πi � Λi of the �i rule together with
the minor premises Π′

i � Λ′
i of the �e rule (with the context formulas Γi , Γ′

i , Δi , Δ′
i

removed) form an unsatisfiable set of Kowalski clauses. A resolution refutation of these
clauses results in a derivation of the empty sequent �. If any literal is removed from
such a derivation, the resolution refutation can be pruned to yield a possible shorter
refutation. For any assumption x : A not discharged by the�e and�i rules, remove the
corresponding negative literal from the initial set of clauses and prune the refutation.
(These cases correspond to what are usually called simplification conversions.)

Now add the context formulas Γi , Γ′
j , Δi , Δ′

j , to get a derivation of ...Γi ,Γ′
i ··· �

...Δi ,Δj ... from the premises of the �i and the minor premises of the �e rule using
cuts and structural rules only. We replace the maximal segment with this derivation
and eliminate the cuts.

Because the maximal segment beginning with �i is topmost, and the derivations
ending in the minor premises of �e contain no segments of maximal degree, the
resulting derivation does not contain any new segments of maximal degree. We have
removed one segment of maximal degree. If the segment in question was the only
maximal segment of degree m(�), the maximal degree of segments in the resulting
derivation is < m(�). Otherwise, we have removed at least one maximal segment,
and thus reduced the number of the segments of maximal degree by 1. Thus, either
the maximal degree of the resulting derivation is < m(�) (if the segment was the only
segment of degreem(�)), or the number of segments of maximal degree in the resulting
derivation is < i(�). �

To illustrate the differences to the case of normalization for single-conclusion
systems, consider the derivation fragment

� A,B,C ∨i� A ∨ Ba,C
� D

wr

� A ∨ Bb,D ∧i

� A ∨ Ba,A ∨ Bb,C ∧Dc
cr

� A ∨ Ba,b, C ∧Dc C,D � E ∧e

� A ∨ Ba,b, E A � F B � F ∨e� E,F
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This derivation fragment contains three overlapping segments, the formulas labelled
a, b, and c respectively. Assuming that A ∨ B and C ∧D are of the same degree, all
three are segments of maximal degree. The segment labelled c with maximum formula
C ∧D is not topmost, since condition (a) is violated. We must pick one of the other
segments, say the one labelled a. (We assume that no segments of maximal degree run
through the minor premises of ∨e and ∧e.) We first permute the ∨e rule across the ∧e

rule to obtain:

� A,B,C ∨i� A ∨ Ba,C
� D

wr

� A ∨ Bb,D ∧i

� A ∨ Ba,A ∨ Bb,C ∧Dc
cr

� A ∨ Ba,b, C ∧Dc A � F B � F ∨e� C ∧Dc, F C,D � E ∧e� E,F

Now the ∨e follows a contraction; we replace it with two ∨E rules, the first of which
ends the segment a.

� A,B,C ∨i

� A ∨ Ba,C
� D

wr

� A ∨ Bb,D ∧i

� A ∨ Ba,A ∨ Bb,C ∧Dc A � F B � F ∨e

� A ∨ Bb,C ∧Dc, F A � F B � F ∨e

� C ∧Dc, F, F
cr

� C ∧Dc, F C,D � E ∧e� E,F

Note that only one premise of the ∨i rule contains the maximal formula of the segment
labelled a—the left one. We obtain:

� A,B,C ∨i

� A ∨ Ba,C A � F B � F ∨e� F,C
� D

wr

� A ∨ Bb,D ∧i

� A ∨ Bb, F,C ∧Dc A � F B � F ∨e

� C ∧Dc, F, F
cr

� C ∧Dc, F C,D � E ∧e� E,F

The segment labelled a is now of length 1 and can be removed. The segment
labelled b is the new topmost segment of maximal degree; the segment labelled c
is considered when that one is removed.

The reader familiar with the normalization proof of Prawitz (1965) will of course
realize that the structure of the preceding proof mirrors that of Prawitz’s proof very
closely. By generalizing the proof, however, we see that its success does not at all
depend on the specific logical inference rules used. The crucial steps are eliminating
segments of length 1, and permuting elimination rules upward across any inference
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in which the formula eliminated by �e is not the principal formula of an �i rule
eliminated by the �e rule. The first step always works if the premises of any �i and
�e inference are jointly unsatisfiable clauses, as is the case with the introduction and
general elimination rules constructed by our general method. The second step also
always works, as long as the calculus has the general form of NsmX, although not all of
its features are essential. For instance, we can modify the proof to work on a calculus
with sequences instead of multisets of formulas but with exchange rules, simply by not
counting exchange inferences in the length of segments. However, we run into problems
if left contraction is explicitly present. In conversion reductions, contractions are used
to simulate resolution inferences by cuts. These cannot in general be avoided, even if
the resolution proof is Horn. For instance, consider

Γ � A
A,A,Π � Λ

cl

A,Π � Λ
cut

Γ,Π � Δ,Λ

Although such a cut can be replaced by two cuts, it multiplies the context formulas:

Γ � A
Γ � A A,Π � Λ

cut

A,Γ,Π � Δ,Λ
cut

Γ,Γ,Π � Δ,Δ,Λ

To obtain the original conclusion, we would need contraction again. One might
consider replacing the cut rule with a multi-cut or “mix” rule that allows the removal
of any number of occurrences of the cut formula to avoid the difficulty. Such a rule,
however, allows us to simulate contraction (by applying mix to a suitable initial
sequent), and so nothing is gained. In natural deduction where assumptions are
labelled, these problems are avoided since the work of contractions on the left is
done by having assumptions in different initial sequents sharing a label.

Proposition 15. A calculus NpmX resulting from NlmX by replacing any general
elimination rules by specialized elimination rules also normalizes.

Proof. To verify that segments of length 1 can always be removed, we have to establish
that there are always simplification conversions for �i rules followed immediately by
a specialized �e

′ rule. The set of clauses corresponding to the premises of the original
(or derived) general elimination rule �e together with the clauses corresponding to
the premises of the �i rule are unsatisfiable. We again obtain a derivation using only
cuts and structural rules of the conclusion of the �e

′ inference by adding the context
formulas Γi , Δi to the clauses corresponding to the premises of �i, and adding Γj , Δj
to the clauses corresponding to the minor premises of �e

′. The clauses corresponding
to the missing minor premises are all of the form x : A �. Add A to its right side and
every sequent inferred from it. The clause thus turns into an initial sequent; A remains
present in the succedent of any sequent derived from x : A � A, thus also in the last
sequent of the derivation fragment.

One easily verifies that �e
′ rules also permute across other rules. �

§8. Single-conclusion sequent calculi. From the multiple conclusion sequent calcu-
lus LK we obtain a single-conclusion system LJ by restricting the succedent in every
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Table 6. Single conclusion sequent rules for some unusual connectives

Connective Rules

A� B
Γ � A B,Γ �

�r

Γ � A� B

(exclusion) Γ � B
�l1

A� B,Γ �
A,Γ � Δ

�l2
A� B,Γ � Δ

A | B (nand)
A,B,Γ � |r

Γ � A | B
Γ � A Γ � B |l
A | B,Γ �

A ↓ B (nor)
A,Γ � B,Γ � ↓r

Γ � A ↓ B
Γ � A ↓l1A ↓ B,Γ �

Γ � B ↓l2A ↓ B,Γ �

A⊕ B Γ � A A,B,Γ � ⊕r1Γ � A⊕ B
Γ � B A,B,Γ � ⊕r2Γ � A⊕ B

(xor)
A,Γ � Δ B,Γ � Δ ⊕l1
A⊕ B,Γ � Δ

Γ � B Γ � A ⊕l2
A⊕ B,Γ �

A→ B/C A,Γ � B Γ � A →/r1Γ � A→ B/C
A,Γ � B Γ � C →/r2Γ � A→ B/C

(if then else)
A,B,Γ � Δ Γ � A →/l1
A→ B/C,Γ � Δ

A,B,Γ � Δ C,Γ � Δ →/l2
A→ B/C,Γ � Δ

rule and every sequent in a proof to contain at most one formula. The calculus LJ is
sound and complete for intuitionistic logic. This idea can be applied to any calculus
LX, of course, and results in an “intuitionistic” variant of the calculus.

We begin by considering the sequent calculus LJX resulting from LX by restricting
the rules in such a way that the succedent is guaranteed to contain at most one formula.
This requires first of all that the premises of each rule have at most one auxiliary formula
in the succedent. This can always be achieved by replacing a rule that does not satisfy
this condition by split rules that do (see Corollary 5). We will assume that the logical
rules of LX do satisfy this condition.

The restriction in LJX requires that in any application of a rule, the succedent of the
premises and conclusion contains at most one formula. This means that in every right
rule, Δ is empty. Furthermore, if a premise of a left rule has an auxiliary formula Λi
in the succedent, Δ must also be empty in that premise (i.e., there is no side formula).
If all premises of a left rule have an auxiliary formula on the right, then no premise
allows a side formula Δ, and the succedent of the conclusion of the rule is empty. We’ll
call rules of this form restricted.

The wr and cut rules now take the form:

Γ �
wr

Γ � C
Γ � A A,Π � Λ

cut

Γ,Π � Λ

where Λ may contain at most one formula.
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670 RICHARD ZACH

The intuitionistic sequent calculus LJ is the single-conclusion sequent calculus cor-
responding to the multi-conclusion classical sequent calculus LK obtained in this way.

Proposition 16. If LJX proves Γ � Δ (and Δ thus contains at most one formula), then
LX does as well. The converse does not hold in general.

Proof. Proofs in LJX can be translated into proofs in LX directly, adding weakenings
to provide the missing shared side formulas Δ in succedents of left rules LX if necessary.
A counterexample to the converse is given by � A ∨ ¬A, which is provable in LK but
not in LJ. �

Not every set of restricted rules will result in a reasonable single-conclusion sequent
calculus. For instance, consider the restricted rules for �, the negated conditional (aka
“exclusion”) in which the left and right rules for → are reversed:

A,Γ � B
�l

A� B,Γ �
Γ � A B,Γ �

�r

Γ � A� B

Note that the succedent is required to be empty in the right premise of �r and in the
conclusion of �l. Because of this, A� B � A� B cannot be derived from A � A
and B � B . In the regular sequent calculus for � we would have:

A � A
B � B

B,A � B
�r

A � B,A� B

A � A� B,B
�l

A� B � A� B

A � A
A � A,B

�l

A� B � A

B � B
A,B � B

�l

A� B,B �
B,A� B �

�r

A� B � A� B

These are not correct derivations in the restricted calculus.3 To obtain a set of rules
in which it is possible to give such a derivation, we must split the �l rule further to
guarantee that no premise has auxiliary formulas on both the left and the right side:

A,Γ � Δ
�l1

A� B,Γ � Δ
Γ � B

�l2
A� B,Γ �

Now the derivation can be carried out:

A � A
�l1

A� B � A

B � B
�l2

A� B,B �
B,A� B �

�r

A� B � A� B

(This corresponds to the right of the two derivations above; a version corresponding
to the left one, where we first apply �r and then �l is not possible since the right
premise of the restricted �r must have empty succedent.)

3 The inability of a set of rules to derive �( �A) � �( �A) from Ai � Ai is of course not a proof
that the rules are incomplete, especially since we do not have a semantics with respect to
which the question can be posed. However, assuming the semantics validate substitution
of equivalent formulas and there are pairs of equivalent formulas, cut-free incompleteness
follows. For instance, it will be impossible to give a cut-free proof of �(A) � �(A ∧ A)
without deriving it from sequentsA � A,A � A ∧ A, andA ∧ A � A using only the rules for
�, whatever they may be.
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Perhaps surprisingly, insufficient intuitionistic calculi can also result from splitting
rules too much. Consider the restricted rules for nand, i.e., the Sheffer stroke:

A,B,Γ � |r
Γ � A | B

Γ � A Γ � B |l
A | B,Γ �

These can derive A | B � A | B from atomic sequents:

A � A
A,B � A

B � B
A,B � B |l

A | B,A,B �
A,B,A | B � |r

A | B � A | B

However, this is not possible when the |r rule is split into

A,Γ � |r1Γ � A | B and
B,Γ � |r2Γ � A | B

In the unrestricted calculus, the last inference of the above proof can be replaced by

A,B,A | B � |r1
B,A | B � A | B |r2
A | B � A | B,A | B

cr

A | B � A | B

The application of |r2 is not allowed in the restricted calculus, since there the right
side of the premise is restricted to be empty.

The question of when suitable restricted calculi LJX are sound and complete for
(something like) an intuitionistic semantics will be the topic of a future paper (but see
Baaz & Fermüller, 1996, and Geuvers & Hurkens, 2017, for results in this direction).
However, any calculus the rules of which satisfy the restriction, also has cut elimination.

Proposition 17. The cut elimination theorem holds for LJX.

Proof. The rules for LJX are obtained, if necessary, by first splitting rules to
guarantee that the premises of of the rule contain at most one auxiliary formula on the
right. In this case, the clauses corresponding to the premises of a rule for a connective
are Horn, i.e., they contain at most one positive literal. Resolution on Horn clauses
only produces Horn clauses. Since the set of clauses corresponding to the premises of
a pair of �l and �r rules is unsatisfiable (even when these are split rules), it has a
resolution refutation consisting only of Horn clauses. As before, we can add the side
formulas of the actual premises to this resolution refutation to obtain a derivation of
the conclusion of the mix from the premises of the �l and �r rules. Since each premise
has at most one formula in the succedent, mix inferences cannot result in more than
one formula on the right in the resulting proof segment. Thus the mix on �( �A) can be
replaced with a sequence of mixes with the subformulas Ai as mix formulas in LJX.
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Table 7. Single-conclusion natural deduction rules for some unusual connectives

Connective Rules

A� B
Γ1 � A B,Γ2 �

�i

Γ1,Γ2 � A� B

(exclusion)
Γ0 � A� B Γ1 � B

�e1Γ0,Γ1 �
Γ0 � A� B A,Γ1 � D

�e2Γ0,Γ1 � D

A | B (nand)
A,B,Γ � |i

Γ � A | B
Γ0 � A | B Γ1 � A Γ2 � B |e

Γ1,Γ2,Γ3 �

A ↓ B (nor)
A,Γ1 � B,Γ2 � ↓i

Γ1,Γ2 � A ↓ B
Γ0 � A ↓ B Γ1 � A ↓e1Γ0,Γ1 �

Γ0 � A ↓ B Γ1 � B ↓e2Γ0,Γ1 �

A⊕ B Γ1 � A A,B,Γ2 � ⊕i1Γ1,Γ2 � A⊕ B
Γ1 � B A,B,Γ2 � ⊕i2Γ1,Γ2 � A⊕ B

(xor)
Γ0 � A⊕ B A,Γ1 � D B,Γ2 � D ⊕e1Γ0,Γ1,Γ2 � D

Γ0 � A⊕ B Γ1 � B Γ2 � A ⊕e2Γ0,Γ1,Γ2 �

A→ B/C A,Γ1 � B Γ2 � A →/i1Γ1,Γ2 � A→ B/C
A,Γ1 � B Γ2 � C →/i2Γ1,Γ2 � A→ B/C

(if then else)
Γ0 � A→ B/C A,B,Γ2 � D Γ2 � A →/e1Γ0,Γ1,Γ2 � D

Γ0 � A→ B/C A,B,Γ1 � D C,Γ2 � D →/e2Γ0,Γ1,Γ2 � D

When permuting mix inferences with rules to reduce the rank, we have to verify that
the resulting inferences obey the restrictions of the rules of LJX. First of all, observe
that if the inference ending in the left premise of the mix is �r, the mix formula must
be �( �A) and thus the left rank is 1. Thus we never have to permute a mix with an �r

rule on the left side of a mix.
If the last inference on the right side of the mix is �l introducing the mix formula,

we start from a derivation that has the form

Γ � �( �A)

··· Π′
i ,Θ � Ξi ,Λ′

i ···
�l

�( �A),Θ � Ξ
mix : �( �A)Γ,Θ∗ � Δ∗,Ξ

where Ξi is empty if Λ′
i is not, and is Ξ otherwise. Ξ itself is empty if no Λ′

i is empty.
This guarantees that Ξ and Ξi ,Λ′

i all contain at most one formula. This is converted to

Γ � �( �A) Π′
i ,Θ � Ξi ,Λ′

i
mix : �( �A)

Γ,Π′
i ,Θ

∗ � Ξi ,Λ′
i
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Since by induction hypothesis, this mix can be removed, we get mix-free derivations of
Π′
i ,Γ,Θ

∗ � Ξi ,Λ′
i (by applying suitable xl inferences). These are exactly the premises

of a correct �l inference, as required. Now consider

Γ � �( �A)

··· Π′
i ,Γ,Θ

∗ � Ξi ,Λ′
i ···

�l

�( �A),Γ,Θ∗ � Ξ
mix : �( �A)

Γ,Π′
i ,Θ

∗ � Ξi ,Λ′
i

As �( �A) does not occur in Π′
i ,Γ,Θ

∗, the right rank is now 1, and by induction
hypothesis the mix can be eliminated.

The other interesting cases where the right premise is the conclusion of �l not
introducing the mix formula or of �r are similar. �

As an example of reducing the degree of a mix on a formula introduced by restricted
left and right rules other than the usual ones in LJ, consider the calculus for the Sheffer
stroke from before. A mix of rank 2 on A | B ,

A,B,Γ � |r
Γ � A | B

Θ � A Θ � B |l
A | B,Θ �

mix : A | B
Γ,Θ �

is reduced to mix inferences on A and B:

Θ � B
Θ � A A,B,Γ �

mix : AΘ, B,Γ �
mix : BΘ,Θ,Γ �

This corresponds to the resolution refutation:

� B
� A A,B �

B �
�

§9. Classical single-conclusion sequent calculi. It is possible to turn an intuitionistic,
single-conclusion sequent calculus into a classical one without allowing multiple
formulas in the succedent. The simplest way to do this is to introduce additional
initial sequents, e.g., � A ∨ ¬A or ¬¬A � A. In natural deduction, a classical system
can also be obtained from NJ by adding axioms, but it is more, well, natural to add a
rule instead. Prawitz (1965) proposed the classical absurdity rule

¬A,Γ � ⊥ ⊥CΓ � A

For the sequent calculus, the corresponding rule would replace ⊥ in the conclusion
with an empty succedent:

¬A,Γ � ⊥CΓ � A

Equivalent rules are double negation elimination and rule of excluded middle:
These rules, however, do not have the subformula property in at least the extended
sense that ⊥C does, where every formula in the premise is a subformula of a formula
in the conclusion or the negation of one.
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674 RICHARD ZACH

A,Γ � C ¬A,Γ � C
gem

Γ � C

Suppose now that something like the negation connective is present in X and that
LJX has the usual ¬l and ¬r rules. It suffices in fact that a connective that behaves
like ¬ can be expressed with the connectives of X in such a way that the ¬l and ¬r

rules can be simulated. E.g., if the Sheffer stroke is present, the corresponding version
of the ⊥C rule would be

A | A,Γ �
⊥CΓ � A

Proposition 18. If LX proves Γ � Δ then LJX + ⊥C proves Γ � Δ (if Δ contains at
most one formula).

Proof. We define a translation of proofs in LX to proofs in LJX + ⊥C by induction
on the height of a proof in LX. The end-sequent of a translation of a proof of Γ � Δ, D
is Γ,Δ¬ � D, where Δ¬ is ¬An, ... ,¬A1 if Δ is A1, ... , An. The translation of a proof of
Γ � also ends in Γ � .

The translation of an initial sequent A � A is just A � A.
If the proof ends in wr, either add wr if the succedent of the premise is empty, or

wl on the negation of the weakening formula plus xl.
If the proof ends in xr where the exchanged formulas do not include the rightmost

formula, add suitable xl inferences to the translation of the proof of the premise.
A proof ending in cr is translated as follows:

Γ � Δ, D,D
cr

Γ � Δ, D

Γ,¬D,Δ¬ � D ¬l¬D,Γ,¬D,Δ¬ �
xl

¬D,¬D,Γ,Δ¬ �
cl¬D,Γ,Δ¬ � ⊥CΓ,Δ¬ � D

A proof ending in xr in which the rightmost formula is active is translated as follows:

Γ � Δ, D,C
xr

Γ � Δ, C,D

Γ,¬D,Δ¬ � C ¬l¬C,Γ,¬D,Δ¬ �
xl

¬D,Γ,¬C,Δ¬ � ⊥CΓ,¬C,Δ¬ � D

If the proof ends in a cut, in a weakening or contraction on the left, or in a logical
inference, add the corresponding inferences to the translations of the proofs ending in
the premise(s). �

The converse of course also holds, since every application of a rule of LJX is also a
correct application of a rule of LX, and ⊥C can be derived in LX by

A � A ¬r� A,¬A ¬A,Γ �
cut

Γ � A
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In order to obtain cut elimination results for LJX, it is convenient to replace the ⊥C
rule with a classical version of the cut rule:

¬A,Γ � A,Π � Λ
kut

Γ,Π � Λ

(Λ contains at most one formula.)
The kut rule can simulate the ⊥C rule over LJX:

¬A,Γ � ⊥CΓ � A
¬A,Γ � A � A

kut

Γ � A

In the reverse direction, ⊥C together with cut can simulate kut:

¬A,Γ � A,Π � Λ
kut

Γ,Π � Λ

¬A,Γ � ⊥CΓ � A A,Π � Λ
cut

Γ,Π � Λ

(Again, Λ contains at most one formula.)
Consequently, the previous result establishing structure-preserving translations of

LX proofs into LJX + ⊥C proofs also transfers to LJX + kut proofs. As an example,
consider the derivation of excluded middle in LJ + kut given by

A � A ∨r1
A � A ∨ ¬A ¬l

¬(A ∨ ¬A), A �
xl

A,¬(A ∨ ¬A) � ¬r

¬(A ∨ ¬A) � ¬A ∨r2¬(A ∨ ¬A) � A ∨ ¬A ¬l

¬(A ∨ ¬A),¬(A ∨ ¬A) �
cl

¬(A ∨ ¬A) � A ∨ ¬A � A ∨ ¬A
kut� A ∨ ¬A

The gem rule is also derivable using kut:

¬A,Γ � C ¬l¬C,¬A,Γ �
xl¬A,¬C,Γ � A,Π � C

kut¬C,Γ,Π � C ¬l¬C,¬C,Γ,Π �
cl¬C,Γ,Π � C � C

kut

Γ,Π � C

The restricted system LJX enjoys cut elimination in precisely the same way LJ
does. However, for the corresponding classical systems LJX + ⊥C and LJX + kut the
situation is more complicated. Clearly, ⊥C and kut, considered as variant cut rules,
cannot be eliminated from proofs in LJX. We might hope, however, that cut can be
eliminated from proofs in LJX + ⊥C and LJX + kut, and that we can “control” the

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S1755020320000015
Downloaded from https://www.cambridge.org/core. IP address: 23.17.153.152, on 04 Nov 2021 at 13:56:29, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S1755020320000015
https://www.cambridge.org/core
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applications of ⊥C and kut, e.g., to atomic A. This was shown by Negri & von Plato
(2001) to hold for their related system G3ip + gem, via the Schütte–Tait method of cut
elimination.

Like cut, neither ⊥C nor kut permute across cr. In order to study Gentzen’s cut-
elimination procedure for LJX we should thus consider their analogs to Gentzen’s mix

rule which allows the removal of any number of occurrences of the cut formula A, not
just the outermost ones. Let us call these rules ⊥∗

C and kix.
It is, however, possible to obtain restricted cut elimination results for kut.

Proposition 19. kix permutes with mix.

Proof. We give the derivations for cases where the rules are also applications of kut

and cut for simplicity.

¬A,Γ � A,Π � C
kix

Γ,Π � C Π′ � Λ′
mix

Γ,Π,Π′ � Λ′
¬A,Γ �

A,Π � C C,Π′ � Λ′
mix

A,Π,Π′ � Λ′
kix

Γ,Π,Π′ � Λ′

Γ � C
¬A,C,Π � A,Π′ � Λ′

kix

C,Π,Π′ � Λ′
mix

Γ,Π,Π′ � Λ′

Γ � C
¬A,C,Π �
C,¬A,Γ �

mix¬A,Γ,Π � A,Π′ � Λ′
kix

Γ,Π,Π′ � Λ′

Note that if C is ¬A in the second case, the starting derivation is impossible, since the
conclusion of the mix then does not contain C on the left. �

By contrast, ⊥∗
C (and thus also ⊥C ) does not permute with mix. Consider the

following case:

¬A,Γ � ⊥∗
CΓ � A A,Π � C

mix

Γ,Π � C

Since the cut formula A does not appear in the succedent of the premise of the ⊥∗
C rule,

we cannot apply the mix rule to it. If we first use wr to introduce the cut formula A in
the succedent, the conclusion sequent still contains ¬A on the left, but application of
⊥∗
C is blocked by the presence of C in the succedent. It would be possible to derive from
A,Π � C the sequent ¬C,Π � ¬A (using ¬l and ¬r) and then apply a mix on ¬A,
but this would increase the degree of the mix formula and (because of the additional
inferences required) would not be guaranteed to decrease the rank of the mix.

One last strategy to avoid this difficulty would be to show that we can transform
the proof of the premise of ⊥∗

C into one of its conclusion that avoids the ⊥∗
C inference

and does not increase the height of that subproof. Then the application of mix would
apply to two subproofs of lower height than the original (since the ⊥∗

C rule would be
removed) and so the induction hypothesis would apply. However, the conclusion ⊥∗

C

rule is in general not provable without⊥∗
C at all. Consider the case¬(A ∨ ¬A) � , which

is derivable without ⊥C . However, the corresponding conclusion of ⊥C , � A ∨ ¬A, is
not so derivable.
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Proposition 20. kix can be replaced by mix if the cut formula ¬A is principal in the
left premise.

Proof. If ¬A is principal, it was introduced by a ¬l rule. Then we can replace

Γ � A ¬l¬A,Γ � A,Π � Λ
kix

Γ,Π � Λ by
Γ � A A,Π � Λ

mix

Γ,Π � Λ �

§10. Single-conclusion natural deduction. We have seen that the multi-conclusion
“sequent style” natural deduction systems NlmX always normalize. If we restrict
the succedent of sequents in derivations to at most one formula, we obtain a
single-conclusion “sequent style” natural deduction system NlX. This will be an
“intuitionistic” version of NlmX. For the standard set of logical operators, this system
is the standard intuitionistic natural deduction system in sequent style, with one slight
difference. In the standard systems, the succedent of sequents always contains exactly
one formula; an empty succedent is represented by the contradiction symbol ⊥. So,
if we are content to add the contradiction constant ⊥ to the language, we can obtain
the standard systems simply by marking every empty succedent in the rules of NlX
with ⊥.

An example rule of an intuitionistic sequent-style natural deduction rule would be

Γ0 � A→ B Γ1 � A B,Γ2 � Δ2 →e

Γ0,Γ1,Γ2 � Δ2

Proposition 21. NlX normalizes.

Proof. By inspection of the proof of Theorem 14. The definition of maximal
segments is now simpler; the same definition as in Prawitz (1965) applies. The cases
required for the reduction of the length of segments are now fewer in number. There is
no cr rule. The major premise of the �e rule cannot be the conclusion of an �i rule. If
it is the conclusion of an �e rule, the segment cannot run through the major premise.

Because the premises of the logical rules are restricted, the resolution refutation of
the clauses corresponding to the premises of the �i and the minor premises of the �e

rule proceeds via Horn clauses. These Horn clauses plus any context formulas result
in a derivation of the conclusion of the �( �A) rule from the premises of the of the �i

and the minor premises of the �e rule. �
Like in the case of the sequent calculus, where we obtained a single-conclusion system

equivalent to LX by adding the⊥C rule to LJX, it is possible to obtain a classical single-
conclusion sequent-style natural deduction system. In order to be able to translate
derivations in LJX + ⊥C to a single-conclusion natural deduction derivations, we
have to add the natural-deduction version of ⊥C (or equivalent rules) to NlX, such as:

¬A,Γ � ⊥CΓ � A
¬A,Γ � C A,Γ � C

lem

Γ,Π � C
¬A,Γ � A,Π � C

kut

Γ,Π � C

With lem we can derive kut, with kut we can derive ⊥C , and with ⊥C + cut we can
derive lem.
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The proof of normalization for classical single-conclusion natural deduction
including the rule ⊥C is more complicated than both the pure intuitionist case and
the multi-conclusion case. This is due to the fact that the notion of maximal segment
must be extended to include sequences of formulas beginning with the conclusion of
⊥C and ending with a major premise of an elimination rule. Such segments are harder
to remove. Although Prawitz (1965) already showed normalization for the fragment
excluding ∨, normalization of the full system was not established until Stålmarck
(1991).

Conjecture 22. NlX + ⊥C normalizes.

§11. Proof terms and formulas-as-types. Under the Curry–Howard isomorphism,
proofs in NlX can be assigned proof terms, just like they can in the standard
intuitionistic cases. Under this isomorphism, conversions of inference segments used
to reduce or permute inferences correspond to operations on proof terms. The general
case considered here suggests that it might be fruitful to separate the proof operation
of substitution, which corresponds to the cut rule, from the conversions themselves.

For each connective �, we may introduce two function symbols, one that applies
to premises of an introduction rule (a proof constructor), and one to the premises of
an elimination rule (a proof destructor). The types of these functions are given by the
corresponding auxiliary formulas; and their conversion clauses by the corresponding
derivation simplifications obtained from resolution refutations. Labels of discharged
assumptions are abstracted similar to �-abstraction. We begin by considering some
familiar examples.

Conjunction can be given a single introduction rule in Horn form,

Γ1 � A Γ2 � B ∧i
Γ1,Γ2 � A ∧ B

The constructor corresponding to∧i is the pairing function, c∧. It takes two arguments,
one for each premise. If the premises end in derivations labelled by s and t, respectively,
we label the derivation ending in the conclusion by c∧(s, t). We may include this in the
statement of the rule itself, by adding a type annotation on the right:

Γ1 � s : A Γ2 � t : B ∧i

Γ1,Γ2 � c∧(s, t) : A ∧ B

Split general elimination rules are

Γ0 � A ∧ B A,Γ1 � Λ ∧e1
Γ0,Γ1 � Λ

Γ0 � A ∧ B B,Γ1 � Λ ∧e2
Γ0,Γ1 � Λ

They correspond to the two destructors d∧1 , d∧2 , and the rules may be written:

Γ0 � t : A ∧ B x : A,Γ1 � s1 : C ∧e1
Γ0,Γ1 � d∧1 (t, [x]s1) : C

Γ0 � t : A ∧ B x : B,Γ1 � s2 : C ∧e2
Γ0,Γ1 � d∧2 (t, [x]s2) : C

Such a destructor may be seen as a generalized � abstraction operator; the x in the
second argument is bound.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S1755020320000015
Downloaded from https://www.cambridge.org/core. IP address: 23.17.153.152, on 04 Nov 2021 at 13:56:29, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S1755020320000015
https://www.cambridge.org/core


CUT ELIMINATION AND NORMALIZATION FOR GENERALIZED CALCULI 679

A cut inference is treated using a substitution operator,

Γ � s : A x : A,Π � t : C
cut : x

Γ,Π � subst(s, x, [x]t) : C

It too binds the label of the discharged assumption x : A.
An ∧i inference followed by an ∧e1 inference may be reduced from

Γ1 � s : A Γ2 � t : B ∧i

Γ1,Γ2 � c∧(s, t) : A ∧ B x : A,Γ3 � u : C ∧e1
Γ1,Γ2,Γ3 � d∧1 (c∧(s, t), [x]u)

to

Γ1 � s : A x : A,Γ3 � u : C
cut : x

Γ1,Γ3 � subst(s, x, [x]u) : C

and similarly for an ∧i followed by a ∧e2 inference.
The corresponding reductions for proof terms then are:

d∧1 (c∧(s, t), [x]u) → subst(s, x, [x]u)

d∧2 (c∧(s, t), [x]u) → subst(t, x, [x]u)

A single general elimination rule for ∧ is given by

Γ0 � A ∧ B A,B,Γ1 � C ∧e
Γ0,Γ1 � C

The destructor corresponding to it is d∧, it takes two arguments, the proof terms for
the major and minor premise. The labels of the discharged assumptions are abstracted.
The rule with proof terms is as follows:

Γ0 � s : A ∧ B x : A, y : B,Γ1 � t : C ∧e

Γ0,Γ1 � d∧(s, [x, y]t) : C

The proof simplification corresponding to a ∧i followed by ∧e is:

Γ1 � s : A Γ2 � t : B ∧i

Γ1,Γ2 � c∧(s, t) : A ∧ B x : A, y : B,Γ3 � u : C ∧e

Γ1,Γ2,Γ3 � d∧(c∧(s, t), [x, y]u)

to
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Γ2 � t : B
Γ1 � s : A x : A, y : B,Γ3 � u : C

cut : x
y : B,Γ1,Γ3 � subst(s, x, [x, y]u) : C

cut : y
Γ1,Γ2,Γ3 � subst(t, y, (subst(s, x, [x, y]u)) : C

Correspondingly, the �-conversion rule for c∧/d∧ is

d∧(c∧(s, t), [x, y]u) → subst(t, y, subst(s, x, [x, y]u))

For the conditional, the introduction and general elimination rules are

x : A,Γ � s : B →i

Γ � c→([x]s) : A→ B

Γ1 � s : A→ B Γ2 � t : A x : B,Γ3 � u : C →e

Γ1,Γ2,Γ3 � d→(s, t, [x]u) : C

Here c→([x]s) is just a complex way of writing �x.s . d→(s, t, [x]u) is the generalized
application operator of Joachimski & Matthes (2003). The corresponding proof
simplification obtained from a resolution refutation of the premises is

x : A,Γ1 � s : B →i

Γ1 � c→([x]s) : A→ B Γ2 � t : A x : B,Γ3 � u : C →e

Γ1,Γ2,Γ3 � d→(c→([x]s), t, [x]u) : C

to

Γ2 � t : A x : A,Γ1 � s : B
cut : x

Γ1,Γ2 � subst(t, x, [x]s) : B x : B,Γ3 � u : C
cut : x

Γ1,Γ2,Γ3 � subst(subst(t, x, [x]s), x, [x]u) : C

The �-reduction rule for the c→/d→ pair is then:

d→(c→([x]s), t, [x]u) → subst(subst(t, x, [x]s), x, [x]u)

or, if we prefer standard notation

app(�x.s, t, [x]u) → u[s[t/x]/x]

In general, we have the following situation: For a connective with introduction rules
�ik and elimination rules �el we introduce function symbols: constructors c�k and
destructors d�l . Each such function symbol has the same arity as the corresponding
rule has premises. In an application of the rule, the succedent of the conclusion is
labelled by the term

c�k ([ �xk1 ]sk1 , ... , [ �xkn ]skn ) or d�l (s0, [ �xl1]sl1, ... , [ �xlm]slm),

where the si are the terms labelling the succedents of the premise sequents and �xi are
the labels of the assumptions discharged in the ith premise.
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The �-reduction rule for a redex of the form

d�l (c�k ([ �xk1 ]sk1 , ... , [ �xkn ]skn ), [ �xl1]sl1, ... , [ �xlm]slm)

is provided by the corresponding simplification conversion on proofs, which in turn is
given by a derivation segment consisting only of cut rules, i.e., a resolution refutation
of the premises of the �ii and �ej rules. This simplification conversion produces
a term built from the arguments ski and slj using only subst operations. There are
corresponding general α conversions: replace any subterm of the form [x]s by [y]s ′

where s ′ is the result of substituting y for every free occurrence of x in s, provided y is
free for x in s. �-conversion corresponds to converting between [x]s and s, provided x
is not free in s. Finally, we define substitution redexes subst(t, y, [ �x]s) which convert
to [�z]s ′, where s ′ is s with every free occurrence of y in s replaced by t, provided t is
free for y in s and y occurs in �x, and �z is �x without y. If y /∈ �x, then subst(t, y, [ �x]s)
converts to [ �x]s .

Conjecture 23. The typed �-calculus obtained in this way strongly normalizes.

§12. Free deduction. Parigot (1992a) has introduced a calculus he called free
deduction FD. It has pairs of rules for each connective called left and right elimination
rules. The right elimination rules are just the general elimination rules of sequent-
style natural deduction. Left elimination rules are what Milne (2015) has called
“general introduction rules.” Rather than adding the complex formula containing
a connective as a conclusion, they allow assumptions containing the complex formula
to be discharged. They are thus perfectly symmetric with the general elimination rule.
The major premise contains the principal formula not on the right (as a conclusion)
but on the left (as a discharged assumption).

For instance, the FD rules for → are:

A→ B,Γ � Δ A,Π � Σ →le1
Γ,Π � Δ,Σ

A→ B,Γ � Δ Π � Σ, B →le2
Γ,Π � Δ,Σ

and

Γ � Δ, A→ B Π � Σ, A B,Π′ � Σ →re

Γ,Π,Π′ � Δ,Σ,Σ′

This is a multi-conclusion version of Milne’s natural deduction system with general
elimination (right elimination) and general introduction (left elimination) rules. Here
the →le rule is split; an equivalent version has a single rule,

A→ B,Γ � Δ A,Π � Σ, B →le

Γ,Π � Δ,Σ

Parigot presents this (and nonsplit rules for ∧, ∨) as a variant system FD′.
Free deduction rules (and hence Milne’s “general introduction rules”) can be

formulated for arbitrary connectives � along the same lines as for sequent calculus
and natural deduction. Given an introduction rule for � with premises Πi ,Γ�Δ,Λi ,
the corresponding �le rule is
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�( �A),Γ � Δ Π1,Γ � Δ,Λ1 ··· Πn,Γ � Δ,Λn �le

Γ � Δ

Free deduction embeds both sequent calculus and natural deduction. The left and
right sequent calculus rules can be simulated by taking the major premise in the
corresponding free deduction right or left elimination rule to be an initial sequent. The
introduction rule of natural deduction is obtained the same way as the right rule of the
sequent calculus from the le rule, e.g.,

�( �A) � �( �A) Π1,Γ � Δ,Λ1 ··· Πn,Γ � Δ,Λn �le

Γ � Δ,�( �A)

Cuts in this system are just like segments in natural deduction, except that here the
formula �( �A) which appears in the major premise of an �e rule at the end of the
segment is—not the conclusion of an �i rule as in natural deduction, but—discharged
by an application of �le at the beginning of a segment. A segment of length 1 then is
of the form,

�( �A),Γ � Δ,�( �A) ···Πi ,Γ � Δ,Λi ··· �le

Γ � Δ,�( �A) ···Π′
j ,Γ � Δ,Λ′

j ··· �re

Γ � Δ

The cut-elimination mechanism of FD can be straightforwardly adapted to the
generalized case. In this situation, we have to introduce labels not just for assumptions
(formulas occurring on the left of a sequent) but also for those on the right. A maximal
segment can be replaced by a sequence of cuts. As in he case of natural deduction,
cuts correspond to proof substitutions. In FD, however, not only can we substitute
derivations of Γ � A for assumptions in derivations of x : A,Π � Λ, but also conversely
substitute a derivation ofA,Π � Λ in a derivation of Γ � Λ, x : A. This of course results
in a nondeterministic reduction procedure, as a cut inference may be replaced either
by a substitution of the conclusion of the left premise in corresponding assumptions
in the proof ending in the right premise, or the other way around.

§13. Quantifiers. The basic principle underlying the generation of sequent calculus
and natural deduction rules with the usual proof-theoretic properties can be extended
to quantifiers as well. The important additional aspect of quantifier rules is that
they (sometimes) require eigenvariable conditions, as in the case of ∀r. Eigenvariable
conditions are necessary for soundness, but they also guarantee that terms can be
substituted in a proof for a variable appearing in an auxiliary formula, which is crucial
for the cut-elimination and normalization properties.

The correspondence between a sequent calculus rule and a set of clauses also holds
for quantifiers. The most general case of a quantifier for which this model could be
considered has a fixed finite number of bound variables and a fixed finite number of
schematic subformulas which may contain these variables:

Qx1 ... xm(A1(x1, ... , xm), ... , An(x1, ... , xm)).
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The truth conditions of such a quantifier Q may be given by a set C of clauses, i.e., a
conjunction of disjunctions of literals, where each atom is of the form Ai(t1, ... , tm),
and where tj is either a variable xj or a Skolem term f(x1, ... , xk) with k < j. Under
this interpretation,Q �x(A1( �x), ... , An( �x)) is true iff ∃ �f∀ �xC. Similarly, falsity conditions
may be given for Q as well.

Such a set of clauses C corresponds to a sequent calculus rule for Qr, by interpreting
a variable xj as an eigenvariable aj and a Skolem term f(x1, ... , xk) as schematic
variable for a term which may contain the eigenvariables a1, ..., ak . If the truth and
falsity conditions for Q underlying the Ql and Qr rules are mutually exclusive (i.e., in
each interpretation at most one of the two is satisfied), the resulting sequent calculus
rules are sound. However, they will be complete only if it is not the case that the left
and right rules each contain both term and eigenvariables.

Let us consider some examples. The syllogistic quantifiers, e.g., “All As are Bs” and
“Some As are Bs,” fit this scheme:

Ax(A(x), B(x)) iff ∀x(¬A(x) ∨ B(x))

¬Ax(A(x), A(x)) iff ∃f(A(f) ∧ ¬B(f))

Sx(A(x), B(x)) iff ∃f(A(f) ∧ B(f))

¬Sx(A(x), B(x)) iff ∀x(¬A(x) ∨ ¬B(x))

We obtain the rules

Γ � Δ, A(t) B(t),Γ � Δ
Al

Ax(A(x), B(x)),Γ � Δ
A(a),Γ � Δ, B(a)

Ar

Γ � Δ,Ax(A(x), B(x))

and

A(a), B(a),Γ � Δ
Sl

Sx(A(x), B(x)),Γ � Δ
Γ � Δ, A(t) Γ � Δ, B(t)

Sr

Γ � Δ,Sx(A(x), B(x))

Schönfinkel’s generalized Sheffer stroke A(x) |x B(x) is the dual of S:

Ux(A(x), B(x)) iff ∀x(¬A(x) ∨ ¬B(x))

¬Ux(A(x), B(x)) iff ∃f(A(f) ∧ B(f))

and has the rules

Γ � Δ, A(t) Γ � Δ, B(t)
Ul

Ux(A(x), B(x)),Γ � Δ
A(a), B(a),Γ � Δ

Ur

Γ � Δ,Ux(A(x), B(x))

We can also consider nonmonadic quantifiers, e.g., the totality quantifier
Txy A(x, y), expressed by

Txy A(x, y) iff ∃f∀x A(x,f(x))

¬Txy A(x, y) iff ∃g∀x ¬A(g, x)

with the rules

A(s, b),Γ � Δ
Tl

Txy A(x, y),Γ � Δ
Γ � Δ, A(a, t(a))

Tr

Γ � Δ,Txy A(x, y)
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In Tl, the eigenvariable a may not appear in the conclusion, but also not in t, while in
Tr the eigenvariable a may not appear in the conclusion, but is allowed to appear in
t(a). These rules are sound, but not complete. For instance, there is no derivation of
Txy A(x, y) � Txy A(x, y) from instances ofA(x, y) � A(x, y), since the eigenvariable
condition is violated if Tl or Tr is applied to such an initial sequent.

Of course, not all natural quantifiers can even be provided with rules using

this framework. For instance, the Henkin quantifier
{
∀x∃y
∀u∃v

}
A(x, y, u, v) has truth

conditions given by

∃f∃g∀x∀u A(x,f(x), u, g(u))

but its falsity conditions cannot be stated in this form.
Whether or not the rules obtained this way are complete, they always enjoy cut-

elimination. Since the clause sets C and C′ corresponding to the Ql a Qr rules are
mutually exclusive, C ∪ C′ is an unsatisfiable set of clauses. Thus a mix inference in
which the left premise is the conclusion of Qr and the right premise the conclusion
of Ql can be reduced to mix inferences operating on the premises of the Ql and Qr

rules, or on sequents obtained from them by substituting terms for eigenvariables. For
instance, consider

Γ � Δ, A(a, t(a))
Tr

Γ � Δ,Txy A(x, y)
A(s, b),Π � Λ

Tl

Txy A(x, y),Π � Λ
cut

Γ,Π � Δ,Λ

The clause set {{¬A(g, x)}, {A(y,f(y))}} is refutable by a single resolution inference,
with most general unifier {g �→ y,f(g) �→ x}. This means the eigenvariable a
corresponding to y will be substituted by the term s corresponding to g, and the
eigenvariable b corresponding to x will be substituted by the term corresponding to
f(g), i.e., t(s). The restriction that b must not occur in s guarantees that this latter
substitution performed in the proof ending in the premise of TR can be carried out.
We can then replace the cut by

Π � Λ, A(s, t(s)) A(s, t(s)),Γ � Δ
cut

Γ,Π � Δ,Λ

We obtain natural deduction rules just as in the propositional case; normalization
holds here as well for the same reason: the clause sets corresponding to the premises of
a Qi rule together with the minor premises of a Qe rule are jointly unsatisfiable, hence
refutable by resolution. The resolution refutation translates into a sequence of cut
inferences applied to derivations ending in these premises, possibly with eigenvariables
replaced by terms. The substitution for each cut inference is provided by the unifier
in the corresponding resolution inference; eigenvariable conditions guarantee that the
corresponding substitution of terms for eigenvariables can be applied to the entire
derivation. (This is the idea behind the “cut elimination by resolution” method of
Baaz & Leitsch (2000).)
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