
Proof Theory of
Finite-valued Logics

Diplomarbeit

ausgeführt am
Institut für Algebra und Diskrete Mathematik

der Technischen Universität Wien

unter Anleitung von
Univ.-Doz. Dr. phil. Matthias Baaz

durch

Richard Zach

Ada-Christen-Gasse 2/C/3, A-1100 Wien

Wien, am 21. September 1993

ii

Preface

Many-valued logic is not much younger than the whole field of symbolic logic.
It was introduced in the early twenties of this century by Lukasiewicz [1920]
and Post [1921] and has since developed into a very large area of research.
Most of the early work done has concentrated on problems of axiomatizability
on the one hand, and algebraical/model theoretic investigations on the other.
The proof theory of many-valued systems has not been investigated to any com-
parable extent. Proof theory requires appropriate formalisms, such as sequent
calculus, natural deduction, and tableaux for classical (and intuitionistic) logic.
Several people have, since the 1950’s, proposed ways to generalize such for-
malisms from the classical to the many-valued case. One particular method for
systematically obtaining calculi for all finite-valued logics was invented indepen-
dently by several researchers, with slight variations in design and presentation.
(Section 3.1 contains a short overview of work done in this area). The main aim
of this report is to develop the proof theory of finite-valued first order logics in
a general way, and to present some of the more important results in this area.
This report is actually a template, from which all results can be specialized to
particular logics. This idea has also found its way into the notation: Through-
out this report, we use V as denoting a set of m truth values, and 2 and Q as
dummies representing n-ary connectives and quantifiers, respectively. Replace
V by the set of values true and false, and 2 and Q by the usual logical con-
nectives and quantifiers, and you have a treatise on proof theoretic systems for
classical logic.

Some of the material presented here has appeared in different forms else-
where; The main innovations of this report are: the use of signed formula
expressions and partial normal forms to provide a unifying framework in which
clause translation calculi (Chapter 2), sequent calculi (Chapter 3), natural de-
duction (Chapter 4) and also tableaux can be represented; the recognition of a
duality between two types—“negative” and “positive”—of resolution, sequents
and tableaux (see also Baaz et al. [1993a]); bounds for partial normal forms for
general (Section 1.6) and induced quantifiers (Section 1.7); and negative reso-
lution (Section 2.6). The cut-elimination theorems extend previous results, the
midsequent theorem is new, and Chapters 4 and 5 are entirely new. Material
on refinements for resolution or on tableaux systems have purposely not been
included. For that, see Baaz and Fermüller [1993] and Hähnle [1993a],
respectively.

iii

iv preface

I will refrain from trying to give a thorough motivation for many-valued
logic in general, or even an answer to the question of Scott [1976], “Does
many-valued logic have any use?” The interested reader will find ample mate-
rial in introductory texts to the topic, e.g., Rescher [1969], Urquhart [1986],
Gottwald [1989], or Bolc and Borowik [1992]. I would, however, like to
remark that in recent years many-valued logic has enjoyed a growth in interest
from computer science, in such areas as Artificial Intelligence (see, e.g., Gins-
berg [1988]) and circuit verification (see Hähnle and Kernig [1993]). The
last chapter, on approximations, also tries to make a step in the direction of us-
ing many-valued logic—and the whole machinery of proof theoretic calculi and
theorem proving systems—to approximate other logics, such as those originally
devised for resoning applications.

Acknowledgements. I would like to extend my gratitude to the following
people: my family, for their unconditional and continuing support; my teach-
ers Matthias Baaz, Chris Fermüller, Georg Gottlob, and Alexander Leitsch; the
Dead Logicians Society, in particular Angelika Gängl-Ehrenwert, Peter Koppen-
steiner, Arie Ovtrucki, and Helmut Veith; Reiner Hähnle and Michel Parigot for
comments on parts of this thesis; Elizabeth Dehning for checking my English;
and many others too innumerable to mention.

Contents

Preface iii

1 Basic Concepts 1

1.1 Languages and Formulas . 1

1.2 Substitutions and Unification . 3

1.3 Semantics of First Order Logics 4

1.4 Signed Formula Expressions . 7

1.5 Partial Normal Forms . 9

1.6 Bounds for Partial Normal Forms 14

1.7 Induced Quantifiers . 18

2 Resolution 21

2.1 Introduction . 21

2.2 Clauses and Herbrand Semantics 22

2.3 Clause Translation Calculi . 24

2.4 Semantic Trees and Herbrand’s Theorem 27

2.5 Soundness and Completeness . 29

2.6 Negative Resolution . 32

3 Sequent Calculus 37

3.1 Introduction . 37

3.2 Semantics of Sequents . 39

3.3 Construction of Sequent Calculi 41

3.4 Equivalent Formulations of Sequent Calculi 47

3.5 The Cut-elimination Theorem for PL 50

3.6 The Cut-elimination Theorem for NL 56

3.7 Analytical Properties of PL . 60

3.8 Interpolation . 62

4 Natural Deduction 67

4.1 Introduction . 67

4.2 Natural Deduction Systems . 68

4.3 Normal Derivations . 73

v

vi contents

5 Approximating Propositional Logics 77
5.1 Introduction . 77
5.2 Propositional Logics . 77
5.3 Singular Approximations . 79
5.4 Sequential Approximations . 83

Bibliography 89

Chapter 1

Basic Concepts

1.1 Languages and Formulas

In mathematical logic—and especially in proof theory—the syntactic level is
very important. The way in which something is formalized may have many
consequences, particularly for the statement of theorems and the technicalities
of proofs. Sometimes even the validity of a proof theoretic argument depends
essentially on the underlying language. One important point in our notion of
(first order) logical syntax is the syntactical distinction between free and bound
variables. In this, we follow Takeuti [1987] and, ultimately, Gentzen [1934].

1.1.1. Definition A first-order logical language L consists of the following
symbols:

(1) Variables:

(a) Free variables: a0, a1, a2, . . . , aj , . . . (j ∈ ω)

(b) Bound variables: x0, x1, x2, . . . , aj , . . . (j ∈ ω)

(2) Constants:

(a) Function symbols of arity i (i ∈ ω): f i0, f i1, f i2, . . . , f ij , . . . (j ∈ ω).
Nullary function symbols are called constants.

(b) Predicate symbols of arity i (i ∈ ω): P i0, P i1, P i2, . . . , P ij , . . . (j ∈ ω)

(3) Logical symbols:

(a) Propositional connectives of arity nj : 2
n0
0 , 2n1

1 , . . . , 2nr
r

(b) Quantifiers: Q0, Q1, . . . , Qq

(4) Auxiliary symbols: (,), and , (comma).

1.1.2. Definition Terms and semi-terms are inductively defined as follows:

(1) Every individual constant is a term (semi-term).

(2) Every free variable (and every bound variable) is a term (semi-term).

1

2 chapter 1. basic concepts

(3) If fn is a function symbol of arity n, and t1, . . . , tn are terms (semi-terms),
then fn(t1, . . . , tn) is a term (semi-term).

1.1.3. Definition Formulas, semi-formulas, and outermost logical symbols are
inductively defined as follows:

(1) If Pn is a predicate symbol of arity n, and t1, . . . , tn are terms (semi-
terms), then Pn(t1, . . . , tn) is a formula (semi-formula). It is called atomic
or an atom. It has no outermost logical symbol.

(2) If A1, A2, . . . , An are formulas (semi-formulas) and 2n is a propositional
connective of arity n, then 2n(A1, A2, . . . , An) is a formula (semi-formula)
with outermost logical symbol 2n.

(3) If A is a formula (semi-formula) not containing the bound variable x,
a is a free variable and Q is a quantifier, then (Qx)A(x), where A(x) is
obtained from A by replacing a by x at every occurrence of a in A, is a
formula (semi-formula). Its outermost logical symbol is Q.

A formula is called open, if it contains free variables, and closed otherwise.
A formula without quantifiers is called quantifier-free. We denote the set of
formulas of a language L by Frm(L).

Of course, in defining specific logics, we shall introduce specific symbols for
the propositional connectives and for the quantifiers.

1.1.4. Example The language L normally used for classical 2-valued logic and
also for other m-valued logics contains the following propositional connectives:
¬ (not), ∧ (and), ∨ (or), ⊃ (implies), ≡ (equivalent) (of which ¬ is unary and
all others binary), and the following two quantifiers: ∀ (for all) and ∃ (there
exists).

1.1.5. Definition The complexity of a formula F , or its degree deg(F), is
inductively defined as follows:

(1) If F is atomic, then deg(F) = 1.

(2) If F is of the form 2n(A1, . . . , An), then deg(F) = 1 +
∑n
i=1 deg(Ai).

(3) If F is of the form (Qx)A(x), then deg(F) = 1 + deg(A(x)).

In the ensuing chapters, we will talk about the object-level constructs, e.g.,
formulas, and later also sequences and sets of those, on a meta-level. For
instance, a calculus may be given by a set of axiom and rule schemata, and every
instance of such a schema is an axiom and an inference, respectively. Hence,
we shall need meta-variables for the symbols of a language L: As a notational
convention we use lowercase letters from the beginning of the alphabet (a, b,
c, . . .) to denote free variables, letters from the middle of the alphabet (f , g,
h, . . .) for function symbols and constants, letters from the end of the alphabet
(x, y, z, . . .) for bound variables, symbols like 2 for connectives, and Q to

1.2. substitutions and unification 3

denote quantifiers, all possibly indexed by subscripts. Furthermore, A, B, C,
. . . will stand for formulas; Γ , ∆, Λ, . . . for sequences and sets of formulas, t
and s for terms or semi-terms. We will write A(x) for a semi-formula possibly
containing the bound variable x, and A(a) resp. A(t) for the formula obtained
from A by replacing every occurrence of the variable x by the free variable a
resp. the term t. Sometimes it will be convenient to handle this meta-notation
more explicitly, particularly in defining and working with inference rules. Then
we use α as a variable for free variables (an eigenvariable), and τ as a variable
for terms (a term variable). A formula consisting of some formula variables,
eigenvariables and term variables is called a schema. By a pre-instance A′ of a
schema A we mean an actual formula from Frm(L) which contains occurrences
of the eigenvariables and term variables of A. By an instance A′′ of A we
mean a pre-instance A′ of A where the eigen- and term variables have been
replaced by free variables not occurring in A′, and terms, respectively. For
instance, consider the schema A(α, τ) where α is an eigenvariable, and τ is a
term variable. P 2

1 (α, a1) ∧ P 1
2 (τ) ⊃ P 2

1 (τ, α) is a pre-instance of A(α, τ), and
P 2

1 (a0, a1) ∧ P 1
2 (f0(a1)) ⊃ P 2

1 (f0(a1), a0) is an instance.

1.2 Substitutions and Unification

Substitutions are of great importance in proof theory and automated theorem
proving. The resolution calculus is based on substitutions and the so-called
unification computation. Unification means finding a substitution, such that
two expressions become equal after the substitution has been applied. In this
section, and when we refer to these concepts later on, we will use variable, term,
and expression more loosely than defined previously: a variable may be free or
bound, a term can refer to a term or a semi-term, and an expression can refer
to (semi-)terms, formulas, tuples, sequences and sets of formulas, and similar
constructs.

1.2.1. Definition A substitution is a mapping of variables to terms with finite
domain. Substitutions are denoted by lowercase greek letters and are written as
sets of expressions of the form t/x, where t is a (semi-)term and x is a variable.

The application of a substitution σ to an expression E is denoted by juxtapo-
sition. Eσ denotes the expression obtained from E by simultaneously replacing
every occurrence of a variable x ∈ dom(σ) in E by its image σ(x).

The composition σϑ of two substitutions σ and ϑ is defined as follows:
σϑ(x) = (σ(x))ϑ for every variable x.

1.2.2. Definition A substitution σ is called a unifier of a set A of expressions,
if Aσ is a singleton set. The substitution σ is called a most general unifier of A,
if every unifier ϑ of A is an extension of σ, i.e., there is a substitution λ such
that ϑ = σλ.

For finite sets of expressions A, the problem of whether there exists a unifier
for A is decidable. The unification algorithm (see Chang and Lee [1973])
calculates the most general unifier if it exists.

4 chapter 1. basic concepts

1.3 Semantics of First Order Logics

The motivation to study many-valued logic does originally arise from semantical
analysis of logical statements: One rejects the assumption that a statement
must be either true or false: it may have some other “truth value”. Different
contexts have led to different interpretations for a third truth value, finitely or
even infinitely many many truth values. This makes it necessary to introduce a
basic set of semantic notations, although we shall almost exclusively deal with
syntactical properties of finite-valued logics, and not with their model theories.
We refer the interested reader to Rescher [1969] and Zinov’ev [1963] for
more philosophical investigations into many-valued logic. A treatise on the
model theory of many-valued logic can be found in Rasiowa [1974].

1.3.1. Definition A matrix L for a language L is given by:

(1) a nonempty set of truth values V of cardinality m,

(2) a subset V + ⊆ V of designated truth values,

(3) an algebra V with domain V of appropriate type: For every n-place con-
nective 2 of L there is an associated truth function 2̃:V n → V , and

(4) for every quantifier Q, an associated truth function Q̃:℘(V) \ {∅} → V

The set of truth values of the logics considered here will always be finite,
i.e., m is a finite number. The constructions given for calculi for many-valued
logics can be extended to logics with an infinite set of truth values, although
the constructions will then, in general, not be effective. For special cases, a
meaningful proof theory can still be developed.

Throughout this work we will give definitions and theorems relative to some
given logic, and we will implicitly refer to this logic’s language and matrix. In
particular, V will always denote the set of truth values of the given logic, and
m its cardinality. We shall also assume that V is equipped with a linear order,
and write V = {v1, v2, . . . , vm} for the truth values in their given order. It is
this order which we will refer to when we give the definition of a sequent.

The semantical structure of a logic is effectively determined by its matrix;
we use boldface type to denote a logic (with its associated language) and its
matrix. For instance, we use CL to refer to classical two-valued first order logic
and Lm to refer to m-valued quantificational Lukasiewicz logic.

The intended meaning of a truth function for a propositional connective is
analogous to the two-valued case: Given formulas A1, . . . , An, which take the
truth values w1, . . . , wn, respectively, the truth value of 2(A1, . . . , An) is given
by 2̃(w1, . . . , wn).

A truth function for quantifiers is a mapping from nonempty sets of truth
values to truth values: Given a quantified formula (Qx)F (x), such a set of truth
values describes the situation where the ground instances of F take exactly the
truth values in this set as values under a given interpretation. In other words,
for a non-empty set M ⊆ V , (Qx)F (x) takes the truth value Q̃(M) if, for every
truth value v ∈ V , it holds that v ∈ M iff there is a domain element d such

1.3. semantics of first order logics 5

that the truth value of F (d) is v (all relative to some interpretation). The
set M is called the distribution of F . This generalization of quantifiers dates
back at least to Mostowski [1963]. Quantifiers of this type have been dubbed
distribution quantifiers by Carnielli [1987b]. In Carnielli [1987a], he has
also investigated the problem of quantificational completeness, i.e., the problem
of which sets of quantifiers can, together with a set of propositional connectives,
express any distribution quantifier.

1.3.2. Example The matrix for classical two-valued logic CL is as follows:

(1) The set of truth values V = {f, t} (false, true)

(2) The set of designated truth values V + = {t}

(3) The truth functions for classical two-valued connectives:

¬
f t
t f

∧ f t

f f f
t f t

∨ f t

f f t
t t t

⊃ f t

f t t
t f t

(4) The truth functions for the quantifiers ∀ and ∃:

∀̃({t}) = t ∀̃({t, f}) = ∀̃({f}) = f

∃̃({f}) = f ∃̃({t}) = ∃̃({t, f}) = t

1.3.3. Example The matrix for the three-valued Lukasiweicz logic L3 consists
of:

(1) The set of truth values V = {f, p, t} (false, possible, true)

(2) The set of designated truth values V + = {t}

(3) The truth functions for the connectives:

¬
f t
p p
t f

∧ f p t

f f f f
p f p p
t f p t

∨ f p t

f f p t
p p p t
t t t t

⊃ f p t

f t t t
p p t t
t f p t

(4) The truth functions for the quantifiers ∀ and ∃ (generalized ∧ and ∨):

∀̃({t}) = t ∃̃({t}) = t

∀̃({t, p}) = p ∃̃({t, p}) = t

∀̃({t, f}) = f ∃̃({t, f}) = t

∀̃({t, p, f}) = f ∃̃({t, p, f}) = t

∀̃({p}) = p ∃̃({p}) = p

∀̃({p, f}) = f ∃̃({p, f}) = p

∀̃({f}) = f ∃̃({f}) = f

6 chapter 1. basic concepts

1.3.4. Definition Let L be a first-order language, and let D be any set. The
extended language L(D) is obtained by adjoining to the set of constant symbols
of L the set D (D is assumed to be disjoint from L).

1.3.5. Definition A structure M = 〈D,Φ〉 for a language L (an L-structure)
consists of the following:

(1) A non-empty set D, called the domain (elements of D are called individ-
uals).

(2) A mapping Φ that satisfies the following:

(a) Each n-ary function symbol f of L(D) is mapped to a func-
tion f̃ :Dn → D if n > 0, or to an element of D if n = 0. If
d ∈ D, then Φ(d) = d.

(b) Each n-ary predicate symbol P of L(D) is mapped to a func-
tion P̃ :Dn → V if n > 0, or to and element of V if n = 0.

1.3.6. Definition Let M be an L-structure. An assignment s is a mapping
from the free variables of L to individuals.

1.3.7. Definition An interpretation I = 〈M, s〉 is an L-structureM = 〈D,Φ〉
together with an assignment s.

1.3.8. Definition Let I = 〈〈D,Φ〉, s〉 be an interpretation. The mapping Φ
can be extended in the obvious way to a mapping ΦI from terms to individuals:

(1) If t is a free variable, then ΦI(t) = s(t).

(2) If t is of the form f(t1, . . . , t2), where f is a function symbol of arity n
and t1, . . . , tn are terms, then ΦI(t) = Φ(f)(ΦI(t1), . . . , ΦI(tn)).

1.3.9. Definition Given an interpretation I = 〈M, s〉, we define the valua-
tion valI to be a mapping from formulas F of L(D) to truth values as follows:

(1) If F is atomic, i.e., of the form P (t1, . . . , tn), where P is a pred-
icate symbol of arity n and t1, . . . , tn are terms, then valI(F) =
Φ(P)(ΦI(t1), . . . , ΦI(tn)).

(2) If the outermost logical symbol of F is a propositional connective 2 of
arity n, i.e., F is of the form 2(F1, . . . , Fn), where F1, . . . , Fn are formulas,
then valI(F) = 2̃(valI(F1), . . . , valI(Fn)).

(3) If the outermost logical symbol of F is a quantifier Q, i.e., F is of the
form (Qx)G(x), then

valI(F) = Q̃

(⋃
d∈D

valIG(d)

)

1.4. signed formula expressions 7

Note that s maps variables to domain elements which are themselves con-
stant symbols in the extended language. An assignment, if constrained to a
finite number of variables, can then be viewed as a ground substitution. For
a formula F it obviously does not make a difference if val is applied to F or
to Fs.

1.3.10. Definition Let I = 〈M, s〉 be an interpretation. An interpreta-
tion I′ = 〈M, s′〉 is called a variant of I modulo a1, . . . , an, in symbols
I ∼a1,...,an I′, iff s equals s′ except in the values of the free variables a1, . . . , an.

1.3.11. Proposition Let A be a formula, I = 〈M, s〉 be an interpretation,
and s(a) = d ∈ D for the free variable a. Then valI(A) = valI′(A[d/a]), for
all I′ ∼a I.

1.3.12. Definition A formula F is called a many-valued tautology iff, for every
interpretation I, it holds that valI(F) ∈ V +. It is called satisfiable iff there is
an interpretation I s.t. valI(F) ∈ V +, and unsatisfiable otherwise.

Many-valued tautologies play an important rôle in the area of Hilbert-style
axiomatizations of many-valued logics. We will not deal with Hilbert-style
axiomatizations nor with many-valued tautologies here, and hence the set V +

will not be very important in our considerations. We will, however, point out
how to incorporate tautologies into our frameworks, e.g., in terms of provability.

1.4 Signed Formula Expressions

It is a well-known and not too surprising fact that the truth of many-valued
formulas can be reduced, in a sense, to the truth of formulas in two-valued
classical logic. In the words of Rosser and Turquette [1952] (p. 1), two-
valued logic is sufficient for the development of many-valued logic. The idea
behind this “two-valisation” of many-valued logics is as follows: We introduce
m two-valued predicates Av1 , . . . , Avm for every many-valued atom A. These
predicates are called signed atomic formulas: Aw expresses that A takes the
truth value w. This notation, and its corresponding theory, will serve as a
convenient formalism for specifying many-valued logics. In fact, the truth table
specification can easily be translated into a specification by means of signed
formula expressions, and it is this specification from which we will be able to
obtain calculi for the logics under consideration in a completely systematic and
mechanizable way.

We will use signed formula expressions (sfes) to give meaning to syntactical
constructs such as clauses and sequents, which will all have corresponding sfes
of a particular form. Satisfaction, validity, etc. of, e.g., a sequent or a clause will
be defined via satisfaction etc. of the corresponding sfes. On the other hand,
sfe schemata provide a convenient means for specifying calculi by recurring on
the semantics of sfes. Sfes of a certain kind will, e.g., be used to specify sequent
calculi rules.

8 chapter 1. basic concepts

1.4.1. Definition A signed formula is an expression of the form Avi , where vi
is a truth value, and A is a first order formula. A signed formula expression is
a formula built up from signed formulas using ∧∧, ∨∨, ¬¬.

A signed formula expression of the form Aw or ¬¬Aw is called a signed literal.
It is called an atomic literal iff A is atomic. In that case, Aw is also called a
signed atom.

Signed formula expressions are Boolean expressions in the signed formulas,
and every interpretation defines a Boolean truth value assignment to the signed
formulas, and to the expression as a whole. We call an sfe ∆ valid iff ∆ is true
under every interpretation via the induced valuation, and satisfiable iff there is
an interpretation s.t. ∆ is true in the induced valuation. Furthermore, assume
that ¬¬ occurs in ∆ only immediately in front of signed formulas, if at all. Then
∆ is called positive iff all its signed literals are of the form Avi (i.e., ¬¬ does not
occur at all), and negative iff they are all of the form ¬¬Avi .

We shall use the following abbreviations: If A1, . . . , An are sfes, then∨∨ n
i=1Ai stands for A1 ∨∨ (A2 ∨∨ . . . (An−1 ∨∨ An) · · ·), and

∧∧ n
i=1 for A1 ∧∧ (A2 ∧∧

. . . (An−1 ∧∧ An) · · ·). If n = 0, we obtain the empty disjunction and the empty
conjunction, respectively. By convention, these represent sfes which are always
false or always true, respectively. If they occur in the context of other disjunc-
tions or conjunctions, respectively, they may be deleted in the obvious way.
Furthermore, if W ⊆ V , then AW denotes

∨∨
w∈W Aw. The usual conventions

for omitting parentheses apply: binary operators associate to the right, and
precedence is given in the decreasing order ¬¬, ∧∧, ∨∨. Furthermore, it is easy to
see that the well-known equivalences for classical logic also hold for sfes. So,
e.g., associative, commutative, distributive and de Morgan’s laws hold for sfes.

1.4.2. Definition Let I be an interpretation and F be a signed formula ex-
pression. We say I satisfies F , in symbols: I |= F , iff

(1) F is of the form Aw, where A is an atomic formula, and valI(A) = w;

(2) F is of the form ¬¬A and I 6|= A;

(3) F is of the form A ∧∧B and I |= A and I |= B;

(4) F is of the form A ∨∨B and I |= A or I |= B;

Furthermore, F is called valid, in symbols |= F , iff every interpretation sat-
isfies F ; it is called satisfiable iff there is an interpretation I s.t. I |= F , and
unsatisfiable otherwise.

1.4.3. Proposition Let F be a formula. Then the following are equivalent:

(1) F is a tautology.

(2) The sfe
∨∨
w∈V + Fw is valid.

(3) The sfe
∧∧
w∈V \V + ¬¬Fw is valid.

(4) The sfe
∨∨
w∈V \V + Fw is unsatisfiable.

1.5. partial normal forms 9

(5) The sfe
∧∧
w∈V + ¬¬Fw is unsatisfiable.

1.4.4. Proposition Let F be a formula. Then the following are equivalent:

(1) F is unsatisfiable.

(2) The sfe
∨∨
w∈V + Fw is unsatisfiable.

(3) The sfe
∧∧
w∈V \V + ¬¬Fw is unsatisfiable.

(4) The sfe
∨∨
w∈V \V + Fw is valid.

(5) The sfe
∧∧
w∈V + ¬¬Fw is valid.

1.4.5. Proposition Every sfe ∆ can be transformed to an equivalent positive
sfe p(∆) (negative sfe n(∆)).

Proof. Use de Morgan’s laws to bring ¬¬ immediately before the signed for-
mulas. Replace every signed literal ¬¬Avi (Avi) in ∆ by

∨∨
j 6=iA

vj (
∧∧
j 6=i ¬¬Avj).

1.4.6. Proposition Every sfe ∆ containing negation only immediately in front
of signed formulas can be transformed to an equivalent positive (negative) con-
junction of disjunctions of signed formulas (a conjunctive form of ∆).

Proof. We prove the proposition by induction on the complexity of ∆: If ∆ is
a signed atom Avi , then Avi is a positive and

∧∧
j 6=i ¬¬Avj a negative conjunction

of disjunctions equivalent to ∆. If ∆ is of the form Ψ ∧∧ Φ, then by induction
hypothesis, Ψ ′ is a conjunctive form of Ψ and Φ′ is a conjunctive form of Φ:
Ψ ′ ∧∧ Φ′ is a conjunctive form of ∆. If ∆ is of the form Ψ ∨∨ Φ, then let Ψ =∧∧ r
i=1

∨∨ ki
j=1Ai,j and Φ =

∧∧ s
i′=1

∨∨ li′
j=1Bi′,j . We obtain a conjunctive form of ∆

by:
r∧∧
i=1

s∧∧
i′=1

(
ki∨∨
j=1

Ai,j ∨∨
li′∨∨
j=1

Bi′,j)

1.4.7. Proposition I |= ∆ iff I 6|= ¬¬∆.

1.4.8. Proposition |= ∆ iff ¬¬∆ is unsatisfiable.

1.5 Partial Normal Forms

Partial normal forms were introduced by Rosser and Turquette [1952],
p. 53ff. as a convenient means of specifying the truth-functional behaviour of
many-valued connectives and quantifiers. For a given connective 2, the i-th
partial normal form is a signed formula expression schema Fi equivalent to
2(A1, . . . , An) which contains only the (signed) formulas A1, . . . , An, and is in
conjunctive normal form1. Partial normal forms are exhaustive and mutually

1Rosser and Turquette [1952] used disjunctive normal forms.

10 chapter 1. basic concepts

exclusive, i.e., under any given interpretation exactly one of the m partial nor-
mal forms comes out true. They can easily be constructed from the truth tables
of a given logic, also for the quantifiers of that logic, and in essence provide us
directly with the rules to be used in our calculi.

1.5.1. Definition Let 2 be a propositional connective of arity n. An sfe
schema F is called an i-th partial form of 2(A1, . . . , An) if the following hold:

(1) The signed formulas in F are of the form Aj
w (1 ≤ j ≤ n, w ∈ V).

(2) For every instance F ′ of F and every interpretation I and it holds that
I |= F ′ iff valI(2(A1, . . . , An)) = vi.

It is called a partial normal form, if it is in conjunctive normal form.

An i-th partial normal form for ¬¬2(A1, . . . , An) is defined as above, with =
replaced by 6=.

Thus, in other words, an i-th partial normal form for 2(A1, . . . , An) (or
¬¬2(A1, . . . , An)) is a conjunctive normal form in the Aj

w which is equivalent
to 2(A1, . . . , An)vi (or ¬¬2(A1, . . . , An)vi). Note that we are actually talking
about schemata (our meta-notation of § 1.1) as objects, rather than using them
to specify a class of, e.g., sfes. A partial form is a schema, not its collection of
instances. This will be important in later chapters, as partial forms are used to
define rules of inference in sequent calculus and natural deduction, which are
rule schemata themselves. It should be noted again that from one partial normal
form we will obtain a clause translation rule, a sequent calculus introduction
rule, and a natural deduction rule (for a connective and a place). In this sense,
the pnfs provide a relationship between all these calculi.

1.5.2. Example Positive partial normal forms for the connectives of classical
two-valued logic CL:

(¬A)f = At (¬A)t = Af

(A ∨B)f = Af ∧∧Bf (A ∨B)t = At ∨∨Bt

(A ∧B)f = Af ∨∨Bf (A ∧B)t = At ∧∧Bt

(A ⊃ B)f = At ∧∧Bf (A ⊃ B)t = Af ∨∨Bt

Negative pnfs for their negations are given by:

¬¬(¬A)f = ¬¬At ¬¬(¬A)t = ¬¬Af
¬¬(A ∨B)f = ¬¬Af ∨∨ ¬¬Bf ¬¬(A ∨B)t = ¬¬At ∧∧ ¬¬Bt

¬¬(A ∧B)f = ¬¬Af ∧∧ ¬¬Bf ¬¬(A ∧B)t = ¬¬At ∨∨ ¬¬Bt

¬¬(A ⊃ B)f = ¬¬At ∨∨ ¬¬Bf ¬¬(A ⊃ B)t = ¬¬Af ∧∧ ¬¬Bt

1.5. partial normal forms 11

1.5.3. Example Partial normal forms for the connectives of three-valued
 Lukasiewicz logic L3 are as follows:

(¬A)f = At

(¬A)p = Ap

(¬A)t = Af

(A ∨B)f = Af ∧∧Bf

(A ∨B)p = (Ap ∨∨Bp) ∧∧ (Af ∨∨Ap) ∧∧ (Bf ∨∨Bp)

(A ∨B)t = At ∨∨Bt

(A ∧B)f = Af ∨∨Bf

(A ∧B)p = (Ap ∨∨Bp) ∧∧ (Ap ∨∨At) ∧∧ (Bp ∨∨Bt)

(A ∧B)t = At ∧∧Bt

(A ⊃ B)f = At ∧∧Bf

(A ⊃ B)p = (Ap ∨∨At) ∧∧ (Ap ∨∨Bp) ∧∧ (At ∨∨Bf)
or, (A ⊃ B)p = (Ap ∨∨Bp) ∧∧ (At ∨∨Bf) ∧∧ (Bf ∨∨Bp)

(A ⊃ B)t = (Af ∨∨Ap ∨∨Bt) ∧∧ (Af ∨∨Bp ∨∨Bt)

Negative pnfs for the negations are:

¬¬(¬A)f = ¬¬At
¬¬(¬A)p = ¬¬Ap
¬¬(¬A)t = ¬¬Af

¬¬(A ∨B)f = ¬¬Af ∨∨ ¬¬Bf

¬¬(A ∨B)p = (¬¬Ap ∨∨ ¬¬Bp) ∧∧ (¬¬Ap ∨∨ ¬¬Bf) ∧∧ (¬¬Af ∨∨ ¬¬Bp)
¬¬(A ∨B)t = ¬¬At ∧∧ ¬¬Bt

¬¬(A ∧B)f = ¬¬Af ∧∧ ¬¬Bf

¬¬(A ∧B)p = (¬¬Ap ∨∨ ¬¬Bp) ∧∧ (¬¬Ap ∨∨ ¬¬Bt) ∧∧ (¬¬At ∨∨ ¬¬Bp)
¬¬(A ∧B)t = ¬¬At ∨∨ ¬¬Bt

¬¬(A ⊃ B)f = ¬¬At ∨∨ ¬¬Bf

¬¬(A ⊃ B)p = (¬¬Ap ∨∨ ¬¬Bf) ∧∧ (¬¬At ∨∨ ¬¬Bp)
¬¬(A ⊃ B)t = ¬¬Af ∧∧ ¬¬Bt ∧∧ (¬¬Ap ∨∨ ¬¬Bp)

We can immediately extract a partial normal form from the truth table in a
way analogous to the method of obtaining complete conjunctive normal forms
for two-valued functions: The idea is to look at the n-tuples of values for which
2 does not take the required truth value vi, to describe the negations of these
situations and to combine these descriptions conjunctively. More precisely, let

I = {(w1, . . . , wn) | 2̃(w1, . . . , wn) 6= vi}.

Then 2(A1, . . . , An)vi =∧∧
(w1,...,wn)∈I

(¬¬A1
w1 ∨∨ ¬¬A2

w2 ∨∨ . . . ∨∨ ¬¬Anwn)

is a negative i-th partial normal form for 2. We can obtain a positive partial
normal form by replacing each ¬¬Aw by

∨∨
u∈V \{w}A

u.

12 chapter 1. basic concepts

1.5.4. Example Consider ∧ in CL for the truth value t: Here,

I = {(f, f), (f, t), (t, f)}.

The corresponding negative partial normal form is:

(A ∧B)t = (¬¬Af ∨∨ ¬¬Bf) ∧∧ (¬¬Af ∨∨ ¬¬Bt) ∧∧ (¬¬At ∨∨ ¬¬Bf).

We obtain a positive normal form

(A ∧B)t = (At ∨∨Bt) ∧∧ (At ∨∨Bf) ∧∧ (Af ∨∨Bt).

A partial normal form constructed this way can have up to mn conjuncts (if
2 never takes the value vi), but standard methods for minimizing combinational
function, such as the Quine-McCluskey procedure, can be used to find minimal
positive or negative normal forms. Here, “minimal” is meant with respect to the
number of conjuncts and the number of formulas per conjunct. For instance,
the partial normal form for A ∧Bt given in Example 1.5.2 is minimal, compare
this to the one obtained in Example 1.5.4. Nevertheless, there are connectives
which admit no “simple” rule. This will be shown in the next section. An
adaptation of the Quine-McCluskey procedure has been implemented and gives
minimal positive pnfs in reasonable time for small m (see Baaz et al. [1993]).

If a connective always takes the truth value vi, then the i-th partial normal
form is the empty conjunction, which is always true.

1.5.5. Definition Let Q be a quantifier. An sfe schema F is called an i-th
partial form of (Qx)A(x) if the following hold:

(1) The signed atoms in F are among {A(τj)
uji | 1 ≤ j ≤ p, 1 ≤ i ≤ m} ∪

{A(αj)
wji | 1 ≤ j ≤ q, 1 ≤ i ≤ m} where the αi are eigenvariables and

the τi term variables.

(2) For every pre-instance F ′ of F and every interpretation I it holds that

(a) If for all d1, . . . , dq ∈ D there are e1, . . . , ep ∈ D s.t.

I |= F{e1/τ1, . . . , ep/τp, d1/α1, . . . , dq/αq}

then valI((Qx)A′(x)) = vi.

(b) If for all e1, . . . , eq ∈ D there are d1, . . . , dp ∈ D s.t.

I 6|= F{e1/τ1, . . . , ep/τp, d1/α1, . . . , dq/αq}

then valI((Qx)A′(x)) 6= vi.

where A′ is the instance of A determined by F ′.

It is called a partial normal form iff it is in conjunctive normal form.
An i-th partial normal form for ¬¬(Qx)A(x) is defined as above, with =

replaced by 6=.

1.5. partial normal forms 13

Term variables and eigenvariables express universal and existential condi-
tions on formulas, in much the same way as the universal and existential quan-
tifiers do in classical logic. It is therefore convenient to introduce quantifiers in
sfes as a notational convention. The expression (∀∀x)A(x) is then meant to stand
for the sfe resulting from A(x) by replacing x with some eigenvariable α, and
similarly, (∃∃x)A(x) for A(τ). Different quantifiers correspond to different eigen-
variables/term variables. It is easy to prove the familiar equivalences (distribu-
tion of ∃∃ over ∨∨, of ∀∀ over ∧∧, de Morgan’s laws) for these quantifiers, allowing us
to work with them just as in classical logic. For instance, if (∀∀x)(A(x)∧∧B(x))
then (∀∀x)A(x)∧∧ (∀∀x)B(x). This is seen as follows: The first expression stands
for F = A(α) ∧∧ B(α), the second for G = A(α) ∧∧ B(β). Let I be an interpre-
tation. Now if for each assignment of d ∈ D for α, I |= A(d/α) ∧∧B(d/α), then
also I |= A(d/α) and I |= A(d/α) for all d ∈ D separately. We may rename
one α and obtain I |= A(d/α) for all d ∈ D and I |= A(d/β) for all d ∈ D. But
this means that G is true in I.

1.5.6. Example Partial normal forms for the quantifiers of CL are as follows:

((∀x)A(x))f = A(τ)f ((∀x)A(x))t = A(α)t

((∃x)A(x))f = A(α)f ((∃x)A(x))t = A(τ)t

Negative pnfs for their negations are given by:

¬¬((∀x)A(x))f = ¬¬A(α)f ¬¬((∀x)A(x))t = ¬¬A(τ)t

¬¬((∃x)A(x))f = ¬¬A(τ)f ¬¬((∃x)A(x))t = ¬¬A(α)t

1.5.7. Example Partial normal forms for the quantifiers of L3 are as follows:

((∀x)A(x))f = A(τ)f ((∀x)A(x))t = A(α)t

((∀x)A(x))p = A(τ)p ∧∧ (A(α)p ∨∨A(α)t)

((∃x)A(x))f = A(α)f ((∃x)A(x))t = A(τ)t

((∃x)A(x))p = A(τ)p ∧∧ (A(α)f ∨∨A(α)p)

Negative pnfs for their negations are given by:

¬¬((∀x)A(x))f = ¬¬A(α)f ¬¬((∀x)A(x))t = ¬¬A(τ)t

¬¬((∀x)A(x))p = ¬¬A(τ)p ∧∧ (¬¬A(α)p ∨∨A(τ)t)

¬¬((∃x)A(x))f = ¬¬A(τ)f ¬¬((∃x)A(x))t = ¬¬A(α)t

¬¬((∃x)A(x))p = (A(α)p ∨∨A(τ)f) ∧∧ ¬¬A(τ)p

As in the case of the propositional connectives, truth tables for quantifiers
yield partial normal forms. Let DistrI(A(x)) = {valI(A(d)) | d ∈ D}, the so
called distribution of A(x) relative to I. The truth table for a quantifier Q maps
distributions to truth values. To describe the conditions for (Qx)A(x) to take
the truth value vi we proceed analogously to the case of a propositional con-
nective: There, we looked at those combinations of truth values w1, . . . , wn for
which 2̃(w1, . . . , wn) is different from the value vi and described these situations.
The conjunctions over the negations of these descriptions yields the required

14 chapter 1. basic concepts

conjunctive partial normal form. Accordingly, let W ⊂ V be a distribution s.t.
Q̃(W) 6= vi. For any particular interpretation I we have DistrI(A(x)) 6= W

iff either there is some d ∈ D s.t. I |= A(d)V \W (i.e., DistrI(A(x)) contains
a truth value not in W), or there is a truth value w ∈ W s.t. for all e ∈ D,

I |= A(e)V \{w} (i.e., there is a truth value in W which is never taken by A(x)
under I). The conjunction of these conditions over all W s.t. Q̃(W) 6= vi fully
describes Q̃(W) = vi. Let

I = {W ⊆ V \ ∅ | Q̃(W) 6= vi}

The sfe expressing Q̃(W) = vi is as follows∧∧
W∈I

((∃∃x ∈ D)A(x)V \W ∨∨
∨∨
w∈W

(∀∀ y)A(y)V \{w})

Note that the quantifiers can be brought to the front in the order required by
Definition 1.5.5. The corresponding sfe is as follows:∧∧

W∈I

(∨∨
u∈V \W

A(τ)u ∨∨
∨∨
w∈W

∨∨
u∈V \{w}

A(αw)u
)

We have an upper bound on the number of conjuncts of 2m − 1: This is the
case if Q̃ never takes the value vi.

If a quantifier never takes a particular truth value vi, then the i-th partial
normal form is the empty conjunction, which is always true.

1.5.8. Example Consider the universal quantifier in CL at place t. We have
I = {{f}, {f, t}}. The corresponding pnf is

((∀x)A(x))t = (A(τ)t ∨∨A(α)t) ∧∧ (A(αt)
f ∨∨A(αf)t)

The second conjunct says that A(x) is either false for all x or true for all x.
The first expresses that there is an element e, such that A(e) is true (or for all
elements, A(e) is true), hence the second alternative applies: A(x) is uniformly
true.

1.5.9. Remark Rosser and Turquette [1952] use a very general quantifier
definition where a quantifier may take several variables and formulas: A quan-
tified formula then has the form

(Qx1, . . . , xk)(A1(x1, . . . , xk), . . . , Al(x1, . . . , xk)).

The case where k = l = 1 is that of our distribution quantifiers.

1.6 Bounds for Partial Normal Forms

In the last section we gave examples of pnfs for n-ary connectives and quantifiers
having at most mn and 2m − 1 conjuncts, respectively. In this section we
show how this can be improved to pnfs of at most mn−1 and 2m−1 conjuncts,
respectively. It is also shown that these bounds are tight.

The following proposition occurs as Lemma 1 in Rousseau [1967].

1.6. bounds for partial normal forms 15

1.6.1. Proposition Let 2 be an n-ary propositional connective. There is an
i-th positive partial normal form for 2(A1, . . . , An) of at most mn−1 conjuncts.

Proof. Consider the following disjunctive form:∨∨
(w1,...,wn−1)

(A1
w1 ∧∧ . . . ∧∧An−1

wn−1 ∧∧
∨∨
wn

2̃(w1,...,wn−1,wn)6=vi

An
w)

This sfe is equivalent to ¬¬2(A1, . . . , An)vi : Suppose that Ai
wi holds for 1 ≤ i ≤

n) and that 2̃(w1, . . . , wn−1, wn) 6= vi. But then the first part of the disjunct
corresponding to (w1, . . . , wn−1) is true, and the second part is true since An

wn

is true. Conversely, assume that the disjunct corresponding to (w1, . . . , wn−1) is
true. Then Ai

wi holds for 1 ≤ i ≤ n− 1. Furthermore, from the second part of
the disjunct, there is a wn s.t. An

wn holds and that 2̃(w1, . . . , wn−1, wn) 6= vi.
But this means that ¬¬2(A1, . . . , An)vi .

By negating the whole sfe we obtain the following i-th partial normal form
for 2(A1, . . . , An):∧∧

(w1,...,wn−1)

(
∨∨
u6=w1

A1
u ∨∨ . . . ∨∨

∨∨
u6=wn−1

An−1
u ∨∨

∨∨
wn

2̃(w1,...,wn−1,wn)=vi

An
wn)

This partial normal form has at most mn−1 conjuncts.

Rousseau [1967] also stated that the bound given above is tight, although
without detailed proof:

1.6.2. Proposition For every n, there is a propositional connective � of ar-
ity n s.t. any i-th partial normal form for � contains mn−1 conjuncts.

Proof. Without loss of generality assume that the set of truth values V =
{0, 1, . . . ,m − 1}, and let u = i − 1. Furthermore, let u′ ∈ V be a truth value
s.t. u′ 6= u. Define � as follows:

�̃(i1, . . . , in) =

{
u′ i1 + · · ·+ in ≡ 0(m)
u otherwise

Obviously, ¬¬�(A1, . . . , An)vi holds iff Aj takes the truth value ij (1 ≤ j ≤ n)
and i1 + · · ·+ in ≡ 0(m).

We show that any given minimal normal form for � has mn−1 conjuncts:
Assume that

F =
∨∨

(W1,...,Wn)

(
∨∨

w1∈W1

A1
w1 ∧∧ . . . ∧∧

∨∨
wn∈Wn

An
wn)

is equivalent to ¬¬�(A1, . . . , An)u and is minimal in the number of disjuncts.
This is the case iff∧∧

(W1,...,Wn)

(
∨∨

w1∈V \W1

A1
w1 ∨∨ . . . ∨∨

∨∨
wn∈V \Wn

An
wn)

16 chapter 1. basic concepts

is a minimal conjunctive normal form for �(A1, . . . , An)u.
Consider an interpretation I making the form for ¬¬�(·)u true, i.e. there is

a tuple (W1, . . . ,Wn) such that the corresponding disjunct is true. We show
that |Wj | = 1 for all Wj : Assume W1 ⊇ {k, l} and that valI(A1) = k. Then the
interpretation I′ which is equal to I except that valI(A1) = l also satisfies F ,
and thus ¬¬�(·)u. If valI(Aj) = valI(Aj) = ij for 2 ≤ j ≤ n, then we have that

k + i2 + · · ·+ in ≡ 0(m)

l + i2 + · · ·+ in ≡ 0(m)

by the definition of �. But this means that k − l ≡ 0(m) and hence, since
1 ≤ k, l < m that k = l. Hence |W1| = 1. Similarly, we show |Wj | = 1 for
j ≥ 2. Thus F is of the form∨∨

(i1,...,in)

(A1
i1 ∧∧ . . . ∧∧Anin).

Every disjunct corresponds to exactly one tuple (i1, . . . , in) s.t. i1 + · · ·+ in ≡
0(m). There are mn−1 such n-tuples. (In general, there are mn−1 tuples s.t.∑n
j=1 ij ≡ k(m) for any given k. Proof by induction: for n = 1, only (k) satisfies

the condition. Assume the statement holds for n. For any choice of in+1 there
are mn−1 choices for (i1, . . . , in) s.t.

∑n
j=1 ij ≡ k − in+1(m).)

1.6.3. Proposition For every quantifier Q there is an i-th partial normal form
containing at most 2m−1 conjuncts.

Proof. Consider the disjunctive form∨∨
X⊆V \{w}

(∧∧
u∈X

(∃∃x)A(x)u ∧∧ [B] ∧∧ (∀∀x)
∨∨
u∈X

(A(x)u ∨∨ [C])
)

where B is (∃∃x)A(x)v iff Q̃(X) = vi, and C is A(x)w iff Q̃(X ∪ {w}) 6= vi.
This form is equivalent to ¬¬(Qx)A(x)vi : Let I be an interpretation satisfying

¬¬(Qx)A(x)vi . In other words, DistrI(A(x)) = Y s.t. Q̃(Y) 6= vi. But then the
disjunct corresponding to Y \ {w} is true under I, since all the existential
conjuncts are true (for every truth value u ∈ Y there is a d ∈ D s.t. A(d)u),

and the universal conjunct is true as well (there is no d ∈ D s.t. A(d)u
′

for some
u′ 6∈ Y).

Conversely, let I be an interpretation satisfying the disjunct corresponding
to X ⊆ V \{w}. We distinguish cases according to which of B and C are present
in this disjunct: If B is present (not present) then X ∪ {w} ⊆ DistrI(A(x))
(X ⊆ DistrI(A(x))), since all existential conjuncts are satisfied. Since the
universal conjunct is true as well, there can be no u ∈ DistrI(A(x)) s.t. u 6∈ X
(u 6∈ X ∪ {w} if C is present). Hence, DistrI(A(x)) ⊆ X (DistrI(A(x)) ⊆
X ∪ {w}). Now, if neither C nor D are present, we have DistrI(A(x)) = X,
and if both C and D are present, we have DistrI(A(x)) = X ∪ {w}. In either
case Q̃(X ∪{w}) 6= vi by the conditions on C and D. If only C is present, then

1.6. bounds for partial normal forms 17

X ⊆ DistrI(A(x)) ⊆ X ∪ {w}. But C alone is present iff Q̃(Y) 6= vi for both
Y = X and Y = X ∪{w}. The case where B alone is present is impossible (the
the universal conjunct cannot be true because of (∃∃x)A(x)w).

By negating the whole expression we obtain a conjunctive form∧∧
X⊆V \{w}

(∨∨
u∈X

(∀∀x)
∨∨

u′∈V \{u,w}
A(x)u

′
∨∨ [B′] ∨∨ (∃∃x)

∨∨
u∈V \(X∪{w})

A(x)u ∨∨ [C ′]
)

where B′ is (∀∀x)
∨∨
u′∈V \{w}A(x)u

′
and C ′ is A(x)w. This conjunctive normal

form contains at most 2m−1 conjuncts, the number of subsets of V \ {w}.

1.6.4. Proposition For every n, there is a distribution quantifier R s.t. any
i-th partial normal form contains 2m−1 conjuncts.

Proof. Let u 6= vi, and let R be defined by

R̃(W) =

{
vi |W | ≡ 0(2)
u otherwise

Let ∧∧
〈V̄1,...,V̄r,W̄ 〉

(∀∀x)
∨∨
w∈V̄1

A(x)w ∨∨ . . . ∨∨ (∀∀x)
∨∨
w∈V̄r

A(x)w ∨∨ (∃∃x)
∨∨
w∈W̄

A(x)w)

be a minimal i-th partial normal form for (Rx)A(x) (Note that ∃∃ distributes
over ∨∨, hence any minimal pnf can be written in the above form). This gives a
disjunctive form for ¬¬(Rx)A(x)vi which is minimal iff the above pnf is minimal
and is of the form

F =
∨∨

〈V1,...,Vr,W 〉
((∃∃x)

∨∨
w∈V1

A(x)w ∧∧ . . . ∧∧ (∃∃x)
∨∨
w∈Vr

A(x)w ∧∧ (∀∀x)
∨∨
w∈W

A(x)w)

where Vj = V \ V̄j and W = V \ W̄ . Observe that from minimality it follows
that no disjunct is redundant (i.e., for every disjunct there is an interpretation
satisfying this disjunct and no other) and that no existential conjunct is redun-
dant (i.e., for no k 6= l it holds that Vk ⊆ Vl). We show the following three
properties for this form:

(1)
⋃
Vj ⊆W ,

(2) W ⊆
⋃
Vj (and hence, W =

⋃
Vj),

(3) |Vj | = 1.

(1) If there were a j and a v ∈ Vj with v 6∈W , then either v is redundant in
the sense that the form with v deleted from Vj is also equivalent to ¬¬(Rx)A(x)vi ,
or there is some interpretation with domain D where A(d)v holds (d is the only
witness for (∃∃x)

∨∨
w∈Vj A(x)w). But then the universally quantified conjunct

cannot be true, since v 6∈W .
(2) Assume that there were a w ∈ W with w 6∈ Vj for j = 1, . . . , r. Let

I be some interpretation satisfying the disjunct under consideration, and let

18 chapter 1. basic concepts

U = {w1, . . . , wr} be truth values (wj ∈ Vj) s.t. there are d1, . . . , dr ∈ D with
A(dj)

wj . Without loss of generality we can assume that D = {d1, . . . , dr}. It

follows that R̃(U) 6= vi and hence that |U | ≡ 1(2). Consider the interpretation
I′ with D′ = D ∪ {dw} and valI′(A(dw)) = w. Obviously, the above form
is satisfied under I′, i.e., R̃(U ∪ {w}) 6= vi. But |U ∪ {w}| ≡ 0(2), and this
contradicts the definition of R.

(3) Assume there were some Vj with Vj = V ′j ∪ {u, v} where u 6= v. By way
of contradiction, we show that there are two interpretations I′ and I′′ which
both satisfy F , but I′ 6|= (Rx)A(x)vi and I′′ |= (Rx)A(x)vi .

Let I be some interpretation satisfying the disjunct under consideration, and
let U = {w1, . . . , wr} be truth values (wj ∈ Vj) s.t. there are d1, . . . , dr ∈ D
with A(dj)

wj . Without loss of generality we can assume that D = {d1, . . . , dr}.
Assume wj = v. We have two cases according to whether u ∈ U : If u 6∈ U , then
take I′ = I and U ′ = U . Otherwise, let k 6= j be such that A(dk)

u and u ∈ Vk.
Now there is some w′k in Vk with w′k 6∈ Vj (otherwise we would have Vk ⊆ Vj).
Let I′ be as follows: D′ is D less all such dk for which A(dk)

u holds, plus new
domain elements d′k and let valI′(A(d′k)) = w′k. The distribution of A(x) under
I′ is U ′ = U \ {u}. We have that |U ′| ≡ 1(2).

Now consider I′′ with D′′ = D′∪{du} and valI′′(A(du)) = u. I′′ satisfies the
same disjunct as I′. The distribution of A(x) under I′′ is U ′′ = U ′ ∪ {u}. But
|U ′′| ≡ 0(2), a contradiction.

In summary, we have that |Vj | = 1, that W =
⋃r
j=1 Vj , and that Vk 6= Vl

for k 6= l. We see that no conjunct can describe more than one situation. But
there are 2|V |−1 subsets of V of odd cardinality (and thus non-empty), hence
there are as many disjuncts.

1.7 Induced Quantifiers

There is, however, a class of distribution quantifiers which have a lower com-
plexity of their pnf’s than the worst cases in the last section. These are the
quantifiers induced by certain connectives, namely those which are idempotent,
associative and commutative. For example, the usual existential and universal
quantifiers are induced by ∨ and ∧, respectively.

1.7.1. Definition Let 2 be an idempotent, associative and commutative con-
nective. The quantifier Q2 induced by 2 is defined as follows:

Q̃2({w}) = w Q̃2({w1, . . . , wr}) = 2̃(w1, 2̃(w2, . . . , 2̃(wr−1, wr) · · ·)

It is easily seen that the conditions of idempotence, associativity and com-
mutativity are sufficient to make the induced quantifier well-defined. In fact,
the induced quantifiers can be characterized as follows:

1.7.2. Proposition A quantifier Q is an induced quantifier iff the following
hold:

(1) Q̃({w}) = w and

1.7. induced quantifiers 19

(2) Q̃(U ∪W) = Q̃(U ∪ {Q̃(W)}) for all U,W 6= ∅ with U ∪W ⊆ V .

The inducing connective is given by 2̃(u,w) = Q̃({u,w}).

Proof. If: Define 2 as above. From the definition of 2 it is easy to see that
it is idempotent and commutative. Furthermore, we have

2̃(u, 2̃(v, w)) = Q̃({u} ∪ Q̃{v, w}) = Q̃({u, v, w}) =

= Q̃(Q̃({u, v} ∪ {w}) = 2̃(2̃(u, v), w).

We prove Q̃(W) = Q̃2(W) by induction on |W |: Q̃({w}) = {w} = Q̃2({w}).
Now, for the induction step we have

Q̃({w1, . . . , wr+1) = Q̃({w1} ∪ Q̃({w2, . . . , wr+1)) =

= Q̃({w1} ∪ Q̃2({w2, . . . , wr+1)) =

= 2̃(w1, 2̃(w2, . . . , 2̃(wr, wr+1) · · ·) = Q̃2(w1, . . . , wr+1).

Only if: (1) and (2) immediately follow from Definition 1.7.1.

There is a close connection between idempotent, associative and commuta-
tive connectives and upper semi-lattices over the set of truth values V :

1.7.3. Proposition Let 2 be an idempotent, associative and commutative
connective. The relation v defined by

u v w iff 2(u,w) = w

is a partial order on V with the property that the least upper bound of
{w1, . . . , wk} ⊆ V equals 2(w1,2(w2, . . . ,2(wk−1, wk) · · ·).

Proof. v is reflexive: 2 is idempotent, 2(u, u) = u, hence u v u for any
u ∈ V . v is antisymmetric: If u v w and w v u, then 2(u,w) = w and
2(w, u) = u. But 2 is commutative, hence u = w. v is transitive: If u v v and
v v w we have 2(u, v) = v and 2(v, w) = w. Thus 2(u,w) = 2(u,2(v, w)) =
2(2(u, v), w) = 2(v, w) = w whence u v w.

We prove that lub{w1, . . . , wk} = 2(w1, . . . ,2(wk−1, wk)) by induction on
k: For k = 1 the equality holds since 2 is idempotent. Assume the statement
holds for k > 1. Obviously, 2(w1, . . . ,2(wk, wk+1) · · ·) is an upper bound for
{w1, . . . , wk+1}. Now let u be an upper bound of {w1, . . . , wk+1}, in other
words: 2(wj , u) = u. In particular, u is an upper bound for {w2, . . . , wk+1},
and by induction hypothesis 2(w2, . . . ,2(wk, wk+1) · · ·) v u. But then

2(2(w1, . . . ,2(wk, wk+1) · · ·), u) =

= 2(w1,2(2(w2, . . . ,2(wk, wk+1) · · ·), u)) =

= 2(w1, u) = u.

Conversely, every such order defines an idempotent, associative and commu-
tative connective by 2(u,w) = lub{u,w}. For finite V such upper semi-lattices

20 chapter 1. basic concepts

can be pictured as (non-planar) labeled, rooted trees. Hence, there are mm−1

idempotent, associative and commutative connectives and as many induced
quantifiers: Cayley’s formula (see Cohen [1978], Theorem 98) gives the num-
ber of labeled trees as mm−2, and each of the m vertices can serve as the root.
The induced quantifiers are obviously the supremum operators on the respective
partial orders.

1.7.4. Proposition Let 2 be an idempotent, associative and commutative
connective. There is an i-th partial normal form for Q2 with at most m − 1
conjuncts.

Proof. We give a disjunctive normal form for ¬¬(Q2x)A(x)vi : (Q2x)A(x) does
not take the value vi iff either there is some d s.t. A(d)u with u 6v vi holds, or
for one of vi’s lower neighbours, say w, we have that for all d, valI(A(d)) v w.
This is expressed as follows: Let v(w) = {u | u v w} and let w1, . . . , wk be all
of vi’s lower neighbours.

(∃∃x)
∨∨

u∈V \v(vi)

A(x)u ∨∨
k∨∨
j=1

(∀∀x)
∨∨

u∈v(wj)

A(x)u

The negation of this yields an i-th pnf for Q2:

(∀∀x)
∨∨

u∈v(vi)

A(x)u ∧∧
k∧∧
j=1

(∃∃x)
∨∨

u∈V \v(wj)

A(x)u

This pnf has less than or equal to m − 1 conjuncts, except when k = m − 1.
But in this situation, the first conjunct is redundant since v(vi) = V .

Chapter 2

Resolution

2.1 Introduction

With the rise of the digital computer in the 1950’s, several logicians became
interested in the possibilities of mechanizing proof search or theorem proving by
computer. A major breakthrough in this area was the introduction of the res-
olution calculus for classical logic in Robinson [1965]. The resolution calculus
is an elegant formalism, in that there is a single rule of inference, but no logical
axioms. It uses a special notation for formulas: clause syntax. This notation,
or actually the way one obtains clause syntax from ordinary formulas, hides
much of the characteristics of predicate logic. Resolution is arguably the most
widely used calculus for automated theorem proving, and also one of the most
thoroughly investigated. Departing from the original formulation of Robinson,
several refinements have been proposed and implemented. For an overview
of resolution-based theorem proving see the classic textbooks of Chang and
Lee [1973] and Loveland [1978]. A more recent account is Leitsch [1993].
See also Avron [1993] for a study of connections between resolution, sequent
calculus and tableaux.

Given its importance and ubiquity in the theorem proving arena, it is not
surprising that resolution systems have also been developed for non-classical
logics, among them many-valued logics. Probably the first such system was
presented by Morgan [1976] for a class of many-valued logics introduced in
Rosser and Turquette [1952]. Since then resolution formulations for several
(classes of) finite and infinite-valued logics (propositional and first order) have
been introduced. For a historical survey of theorem proving formalisms for
many-valued logics see Hähnle [1993a]. The work of Stachniak et. al. should
be mentioned here in particular, see, e.g., Stachniak and O’Hearn [1990]. A
different approach, based on a truth-functional analysis of classical resolution,
was proposed by Baaz [1984, 1989, 1992]. The resolution rule in this context
takes the form

C1 C2

(C1 \D1)σ ∪ (C2 \D2)σ

where D1 ⊆ C1, D2 ⊆ C2, the literals in D1 and D2 are signed with truth values
w1 and w2, respectively, w1 6= w2, and the atoms in D1 and D2 are unifiable
with mgu σ. This is a straightforward generalization of the classical case, where

21

22 chapter 2. resolution

w1 = t and w2 = f and the signs are expressed by absence or presence of ¬,
respectively.

One advantage of this approach is that several methods of refining the
deductive system developed for the classical case can also be generalized to
this framework. We shall not give such refinements here, but see Baaz and
Fermüller [1992, 1993]. This chapter will be devoted to justifying the above
rule. Some familiarity with classical resolution terminology is assumed.

2.2 Clauses and Herbrand Semantics

2.2.1. Definition A (many-valued) clause C = {A1
w1 , . . . , An

wn} is a finite
set of signed atoms. By 2 we denote the empty clause.

The atom set at(C) of a clause C is the set of its atomic formulas: at(C) =
{A1, . . . , An}.

The clause syntax is a convenient notation for automated theorem proving.
In the classical case, a clause denotes a disjunction of atoms or negations of
atoms, and a set of clauses a conjunction of such disjunctions. Clause sets are
implicitly considered as universally closed. By bringing a formula into prenex
form and then introducing Skolem functions, we can always obtain a formula
in this form which is satisfiable iff the original formula is. In this sense, clause
syntax is sufficient to capture full classical first order logic.

Similarly, for every set of many-valued clauses there is a corresponding sfe
in conjunctive normal form: A clause C = {A1

w1 , . . . , Ap
wp}, where Ai is an

atomic formula and wi ∈ V , denotes
∨∨ p
i=1Ai

wi . A set of clauses C denotes
the conjunction of the disjunctions corresponding to its members. The sfe
in conjunctive normal form corresponding to C is uniquely determined up to
associativity and commutativity of ∧∧ and ∨∨. When we say, e.g., that C is true
in an interpretation, we mean that the corresponding sfe is true.

2.2.2. Definition Let M = 〈D,Φ〉 be a structure. M universally satisfies a
set of clauses C iff C is true in 〈M, s〉 for every assignment s,.

2.2.3. Definition The Herbrand universe H(C) of a set of clauses C is the set
of all ground terms built up from the function symbols and constants in C, or
from the function symbols in C and a new constant a, if C contains no constants.

2.2.4. Definition The Herbrand base A(C) of a set of clauses C is the set of
all atomic formulas P (t1, . . . , tn) where P is a predicate symbol in C, and t1,
. . . , tn ∈ H(C).

2.2.5. Definition An Herbrand interpretation (H-interpretation) H of a set
of clauses C is a set of ground literals {Lφ(L) | L ∈ A(C)}, where φ is a function
from A(C) to V .

H H-satisfies C, iff for every ground instance C ′ of a clause C ∈ C it holds
that C ′ ∩ H 6= ∅. If no H-interpretation satisfies C, then C is said to be H-
unsatisfiable. If H |= C, then H is called an Herbrand model for C.

2.2. clauses and herbrand semantics 23

In general, if A is a set of atoms, then a set of the form {Lφ(L) | L ∈ A} is
called an assignment to A. A subset of an assignment is a partial assignment
to A. Hence, an H-interpretation is an assignment to A(C).

Intuitively, it is clear that every H-interpretation also constitutes a structure
in the sense of Definition 1.3.7, and that to every ordinary interpretation there is
a corresponding H-interpretation. It is then not surprising that H-satisfiability
and satisfiability proper coincide in the sense that a set of clauses is H-satisfiable
iff it (considered as an sfe) is satisfiable. Since in the case of classical logic, the
meta-notation of sfes can be interpreted on the level of the object language,
the following results subsume the corresponding results for classical logic as
subcases.

2.2.6. Definition Let H be an H-interpretation of a set of clauses C. The
structureMH corresponding to H is defined as follows: MH = 〈H(C), Φ〉, with
Φ as follows:

(1) function symbols: Φ(f) = f̃ where f̃ is the n-ary function mapping the
arguments t1, . . . , tn ∈ H(C) to f(t1, . . . , tn) ∈ H(C), or Φ(f) = f if f is
a constant symbol.

(2) predicate symbols: Φ(P) = P̃ where P̃ is the function mapping
〈d1, . . . , dn〉 to φ(P (d1, . . . , dn)).

2.2.7. Proposition If H H-satisfies a set of clauses C, then MH universally
satisfies C.

Proof. Let C be a clause in C and let s be any assignment for MH. This
maps free variables to ground terms. C has a ground instance Cs obtained by
replacing every variable in C by its image under s. By hypothesis, there is a
literal Lw ∈ Cs∩H. The wayMH was constructed ensures that valMH

(L) = w.
But this means that C is true in 〈MH, s〉.

2.2.8. Definition Let M = 〈D,Φ〉 be a structure, and C a set of clauses. An
H-interpretation HM corresponding toM is an H-interpretation satisfying the
following condition:

(C) If valM(F ′) = v, where F ′ is a ground instance of some formula F , then
F ′v ∈ HM.

2.2.9. Proposition If M = 〈D,Φ〉 universally satisfies C, then any corre-
sponding HM H-satisfies C.

Proof. Assume that there were a ground instance C ′ of a clause in C
and an H-interpretation HM, s.t. C ′ ∩ HM = ∅. Let C ′ = Cσ, where
σ = {t1/a1, . . . , tn/an} and a1, . . . , an are all the variables occurring in C.
Let σ′ = {Φ′(t1)/a1, . . . , Φ

′(tn)/an}, where Φ′ is Φ extended by a value for the
new constant a in case C contained no constant symbols.

By (C) we have for all A′i
wi ∈ C ′ that valM(A′i) 6= wi (where A′i is an

instance of a literal Ai ∈ C), and hence that the assignment σ′ of domain

24 chapter 2. resolution

elements to the free variables of C is such that C is not satisfied in 〈M, σ′〉.
This contradicts the assumption that M universally satisfies C.

It is easy to see that H is an H-interpretation corresponding to MH for a
given M.

2.3 Clause Translation Calculi

In the two-valued case, there is a direct interpretation of a set of clauses as
a first-order formula, namely as the universal closure of a conjunction of dis-
junctions, where the literals in the disjunction are exactly the members of the
individual clauses. Since any classical first-order formula can be written in this
form by familiar equivalences of connectives, distribution rules, and skolemiza-
tion, resolution becomes applicable as a refutational proof system. To establish
the unsatisfiability of a formula, we have to test if the corresponding clause form
derives the empty clause. In the many-valued case we also need to find such a
translation mechanism in order for resolution to be of any practical value. It is
not surprising that the partial normal forms for connectives and quantifiers pro-
vide us with such a translation mechanism. The conditions such a translation
has to satisfy are soundness and completeness: A signed formula is universally
unsatisfiable iff its clause translation is. By the last two propositions, this
coincides with H-unsatisfiability on the clause level.

The clause translation calculi presented here are language preserving.
A different, and more effective way to translate formulas to clause forms
is the structure preserving method (see Hähnle [1993b] and Baaz and
Fermüller [1993]).

2.3.1. Definition An extended clause is a finite set of signed formulas.

Here again, an extended clause is read as the sfe consisting of the disjunction
of its members. A set of extended clauses is the conjunction of its members.
Every clause is also an extended clause, and every signed formula can be thought
of as a unit extended clause. Universal satisfiability is defined just as in the
case of ordinary clause sets.

2.3.2. Proposition Let F be a closed formula.

(1) The extended clause {Fw | w ∈ W ⊆ V } is satisfiable iff it is universally
satisfiable.

(2) F is a many-valued tautology iff {Fw | w ∈ V \ V +} is universally unsat-
isfiable.

Proof. Immediate from Proposition 1.4.3, since F contains no free variables.

Proof. By Proposition 1.4.3

2.3. clause translation calculi 25

2.3.3. Definition Let
∧∧
j∈I ∆2:i(j) be a positive i-th partial normal form of

2(A1, . . . , An), where 2 is of arity n, ∆2:i(j) is a disjunction of signed atoms of
the form Ai

w (1 ≤ i ≤ n), and let ∆′2:i(j) be the clause corresponding to ∆2:i(j)
A translation rule for 2 at place i is a schema of the form:

C ∪ {C ∪ {2(A1, . . . , An)vi}}
C ∪ {C ∪∆′2:i(j) | j ∈ I}}

2:i

2.3.4. Theorem Let C, C, 2(A1, . . . , An)vi and ∆′2:i(j) be as in Defini-
tion 2.3.3. Then

D = C ∪ {C ∪∆′2:i(j) | j ∈ I}}

is satisfiable iff
E = C ∪ {C ∪ {2(A1, . . . , An)vi}}

is satisfiable.

Proof. Let H be an H-interpretation satisfying D (E). MH universally
satisfies D (E) by Proposition 2.2.7. Let s be an assignment to the free variables
of D(resp., E). 〈MH, s〉 satisfies all clauses in C. If it does not satisfy C, then
it has to satisfy all the ∆′2:i(j) (resp., 2(A1, . . . , An)vi). By the definition of a
partial normal form for 2, 〈MH, s〉 then satisfies also 2(A1, . . . , An)vi (resp., all
of ∆′2:i(j)). HenceMH universally satisfies E (resp., D). By Proposition 2.2.9,
E (resp., D) is H-satisfied by H.

2.3.5. Definition Let
∧∧
j∈I ∆Q:i(j) be a positive i-th partial normal form of

(Qx)A(x), where ∆Q:i(j) is a disjunction of signed atoms of the form A(τi)
w

(1 ≤ i ≤ p) respectively A(αi)
w (1 ≤ i ≤ q), and let ∆′Q:i(j) be the clause

corresponding to ∆Q:i(j).
A translation rule for Q at place i is a schema of the form:

E = C ∪ {C ∪ {((Qx)A(x))vi}}
D = C ∪ {C ∪∆′′Q:i(j) | j ∈ I}}

2:i

where ∆′′Q:i(j) is obtained from ∆′Q:i(j) by

(1) replacing term variables τi by terms of the form fi(a1, . . . , ak), where fi are
distinct new k-ary function symbols and a1, . . . , ak are all free variables
in C ∪ {((Qx)A(x))vi}, and by

(2) replacing eigenvariables αi by distinct new free variables bi (not occurring
in E).

2.3.6. Theorem Let C, C, ((Qx)A(x))vi and ∆′′2:i(j) be as in Definition 2.3.5.
Then

D = C ∪ {C ∪∆′′Q:i(j) | j ∈ I}}

is satisfiable iff
E = C ∪ {C ∪ {(Qx)A(x)vi}}

is satisfiable.

26 chapter 2. resolution

Proof. If: Let H be an H-interpretation satisfying E . MH universally satis-
fies E by Proposition 2.2.7. Assume, by way of contradiction, that D were not
universally satisfiable, i.e., for every structureM′ for D, there is an assignment
s′ s.t. 〈M′, s′〉 does not satisfy D. In particular, any structure M′H extending
MH by providing an interpretation for the new function symbols cannot univer-
sally satisfy D. We show that this would imply that MH does not universally
satisfy E :

Let M′H be such a structure extending MH. There is an assignment s′

s.t. 〈M′H, s′〉 does not satisfy D. If 〈M′H, s′〉 falsifies a clause in C, then so
does 〈MH, s〉 since the new function symbols and variables do not occur in C.
So assume that 〈M′H, s′〉 falsifies some ∆′′Q:i(j). That is, for the assignment

of f̃i(s
′(a1), . . . , s′(ak)) to τi and s′(bi) for αi we have 〈M′H, s′〉 6|= ∆Q:i(j).

We know that this property holds for every structure extending MH, i.e., for
every possible interpretation of the function symbols and every possible as-
signment to the variables, there are assignments to the new (eigen-) variables
s.t. some ∆Q:i(j) is falsified. By Definition 1.5.5 (2b) of partial form for Q,
valMH

((Qx)A(x)) 6= vi.

Only if: If D is satisfiable, it is also universally satisfiable. Let M be a
structure universally satisfying D, and let s be an assignment forM. In 〈M, s〉
either C is true or all of ∆′′Q:i(j) (j ∈ I). In the first case, 〈M, s〉 also satisfies E .
Otherwise, let s′ be an assignment with s′ ∼b1,...,bq s. 〈M, s′〉 also satsifies all
of ∆′′Q:i(j) (j ∈ I), since the bi do not occur in C. But this means that for
all assignments to the eigenvariables (namely, all s′), there are assignments to
the term variables (namely, Φ〈M,s′〉(fi(a1, . . . , ak))) s.t. the conjunction of the
∆′′Q:i(j) is true in 〈M, s〉. By Definition 1.5.5 (2a) then 〈M, s〉 |= (Qx)A(x)vi .
The assignment s was arbitrary, so E is universally satisfiable, and, by Propo-
sition 2.2.9, H-satisfiable.

Using the translation rules defined above, any set of extended clauses E can
be transformed to a set of clauses C which is H-unsatisfiable iff E is universally
unsatisfiable. In case E contains no free variables, this is just the case iff E is
unsatisfiable. If we want to prove that a given closed formula F is unsatisfiable,
Proposition 2.3.2 gives us a set of extended formulas which is unsatisfiable iff
F is. Using the translation, we can apply resolution to obtain a proof.

2.3.7. Example The following are the well known translation rules for classical
logic:

C ∪ {C ∪ {¬Af}}
C ∪ {C ∪ {At}}

¬:f
C ∪ {C ∪ {¬At}}
C ∪ {C ∪ {Af}}

¬:t

C ∪ {C ∪ {A ∧Bf}}
C ∪ {C ∪ {Af , Bf}}

∧:f
C ∪ {C ∪ {A ∧Bt}}

C ∪ {C ∪ {At}, C ∪ {Bt}}
∧:t

C ∪ {C ∪ {A ⊃ Bf}}
C ∪ {C ∪ {At}, C ∪ {Bf}}

⊃:f
C ∪ {C ∪ {A ⊃ Bt}}
C ∪ {C ∪ {Af , Bt}}

⊃:t

C ∪ {C ∪ {(∀x)A(x)f}}
C ∪ {C ∪ {A(f(a1, . . . , ak))

f}}
∀:f C ∪ {C ∪ {(∀x)A(x)t}}

C ∪ {C ∪ {A(b)t}}
∀:t

2.4. semantic trees and herbrand’s theorem 27

2.4 Semantic Trees and Herbrand’s Theorem

2.4.1. Definition Let C be a set of clauses, and K ⊆ A(C). Let B(K) = {Avi |
A ∈ K, vi ∈ V } be the union of all assignments to K.

A semantic tree S for K is a finitary, rooted, downward directed tree with
labeled edges s.t. the following hold:

(1) Every edge e is labeled by a subset l(e) ⊆ B(K).

(2) If e1, . . . , ek are all the edges leaving some node X, then {l(e1), . . . , l(ek)}
is H-unsatisfiable.

(3) For every branch B in S the following hold: Let B consist of the edges e1,
e2, . . . There is exactly one assignment AK to K s.t. AK ∩

⋃
i≥1 l(ei) = ∅.

We say B omits AK .

(4) For every assignment AK to K there is a branch B in S which omits AK .

By I(X) we denote the union of labels on the unique path from the root to X.
I(X) is called the refutation set of X. If B is a branch in S then I(B) =⋃
X∈B I(X).

2.4.2. Remark Note that the concept of semantic tree as defined here is dual
to the usual one (see Kowalski and Hayes [1969]).

We see from the above definition that, given a semantic tree S for A(C),
every H-interpretation is omitted by a branch in S and every branch in S omits
an H-interpretation.

2.4.3. Example We construct a special binary semantic tree for K were every
edge is labeled by a singleton. For this, let A be an atom. By T (A) denote the
tree constructed as follows:

(1) Stage 0: T (A)0 contains a single node X.

(2) Stage k+1: Let Xs be a leaf of T (A)k, and let V (X) = {w | Aw ∈ I(Xs)}
be the set of all truth value indices labeling the edges on the path from X to Xs.
Let i < j be minimal indices s.t. vi /∈ V (X), vj /∈ V (X). Append to Xs two
nodes Xs,1 and Xs,2, and label the edges leading to them {Avi} and {Avj},
respectively.

(3) Stop at stage m− 1.

The following holds for T (A): First, all branches of T (A) have length m−1
and the labels on one branch are distinct. Hence, every branch omits exactly
one literal.

Furthermore, every literal is omitted by some branch in T (A). Proof by
induction on m: For m = 2 this is evident. Now consider the tree T (A)m−2:
The maximal index on a branch is m − 1. In fact, T (A)m−2 equals the tree
T ′(A) for V ′ = V \ {vm}. By induction hypothesis, some branch B in T (A)m−2

omits a given literal Au. Whatever the vi and vj are in the construction of the
successors of the last node on B, one of them is certainly distinct from u. The
respective branch in T (A) omits Au.

28 chapter 2. resolution

Now let K be enumerated (without repetitions) by A1, A2, A3, . . . Define
T in stages as follows:

(1) Stage 1: Write down T (A1).

(2) Stage k + 1. Replace all leaves of the tree constructed in stage k
by T (Ak+1).

It is easy to see that T is indeed a semantic tree.

2.4.4. Definition Let C be a clause and S a semantic tree. C fails at a node
X in S iff there is a ground instance C ′ of C s.t. C ′ ⊆ I(X).

A node X in S falsifies a set of clauses C iff some C ∈ C fails at X. If there
is no node above X with this property, then X is called a failure node w.r.t. C.
If all successors of a node Y are failure nodes for C, then Y is called an inference
node. If every branch in S contains a failure node, then S is said to be closed
w.r.t. C.

2.4.5. Proposition A set of clauses C is unsatisfiable iff every semantic tree
for A(C) is closed w.r.t. C.

Proof. If: Let S be a semantic tree for A(C) and let H be an H-interpretation
for C. By definition of a semantic tree, H is omitted by some branch B in S.
S is closed, so there is a failure node X on B. For a ground instance C ′ of a
clause C ∈ C we have C ′ ⊆ I(X). If H would H-satisfy C, then C ′ ∩H 6= ∅
and consequently I(X) ∩ H 6= ∅. But this contradicts the assumption that
B omits H.

Only if: Let S be a semantic tree for A(C). Every branch B of S omits
an H-interpretation H. Since C is H-unsatisfiable, we have that for a ground
instance C ′ of some clause C ∈ C we have C ′ ∩H = ∅. From this it follows that
C ′ ⊆ I(B) (since B omits H, and hence B(A(C)) \H = I(B)), and C fails at
some node X on B. So S is closed w.r.t. C.

2.4.6. Proposition The tree R(S) resulting from pruning a closed semantic
tree S at all its failure nodes is finite.

Proof. Assume R(S) were infinite. By König’s Lemma, it would then contain
an infinite branch. This contradicts the assumption that S is closed.

2.4.7. Theorem (Herbrand’s Theorem) A set of clauses C is unsatisfiable iff
there is a finite unsatisfiable set of ground instances of clauses in C.

Proof. If: This follows immediately from the definition of H-satisfaction.

Only if: By Propositions 2.4.5 and 2.4.6, there is a closed semantic tree R, all
of whose (finitely many) failure nodes Xi falsify ground instances C ′i of clauses
in C. If X1, . . . , Xn are all failure nodes of R, then {C ′1, . . . , C ′n} is a finite
unsatisfiable set of ground instances of clauses in C.

2.5. soundness and completeness 29

2.5 Soundness and Completeness

2.5.1. Definition Let C1 and C2 be clauses s.t. var(C1) ∩ var(C2) = ∅, and
let D1 ⊆ C1, D2 ⊆ C2 be such that every literal in D1 is signed with a truth
value v, every literal in D2 with a truth value w, and v 6= w. If A = at(D1∪D2)
is unifiable with mgu σ, then 〈D1, D2, A〉 is called a key triple with mgu σ
for C1, C2.

Resolution of two clauses C ′1 and C ′2 requires that they be variable disjoint,
i.e., that var(C ′1)∩ var(C ′2) = ∅. We call C1 and C2 variable disjoint renamings
of C ′1 and C ′2, if C1 = C ′1λ1 and C2 = C ′2λ2, where λi leaves the variables in
var(Ci) \ var(Cj) intact, and maps var(Ci) ∩ var(C2) to different new variables
not in ran(λj) (i = 1, 2; j = 2, 1).

2.5.2. Definition (Resolvent) Let C ′1 and C ′2 be clauses, let C1 and C2 be
variable disjoint renamings, respectively, and let 〈D1, D2, A〉 be a key triple
with mgu σ for C1, C2. Then the clause (C1 \D1)σ ∪ (C2 \D2)σ is a resolvent
of C ′1, C ′2.

2.5.3. Definition A resolution deduction of a clause D from a set of clauses C
is a finite sequence of clauses R1, R2, . . . , Rs = D s.t. either Ri ∈ C or Ri is a
resolvent of clauses Rj , Rj′ , j, j

′ < i. In that case we write C ` D.

2.5.4. Lemma Let R be a resolvent of C1 and C2. If a model H satisfies C1

and C2, then it also satisfies R.

Proof. Clearly, H satisfies C1 and C2 iff it satisfies their variable disjoint
renamings. W.l.o.g. we can therefore assume that var(C1) ∩ var(C2) = ∅ and
hence var(R) ⊆ var(C1) ∪ var(C2). Assume, by way of contradiction, that H
would not satisfy R, i.e., that Rλ ∩ H = ∅ for some ground substitution λ.
If a literal Lvσλ occurs in Rλ, then Lv occurs in C1 or C2 (σ is the mgu the
resolution). The substitution σλ can be extended to a ground substitution η
with ran(η) = var(C1) ∪ var(C2) s.t. η | var(R) = σλ.

Now (C1 \ D1)η ∩H = ∅. D1η is a singleton set, say, {Lv}, and since H
satisfies C1 we have that {Lv} ∩H 6= ∅. In other words, Lv ∈ H. Similarly,
we obtain D2η = {Lw} ⊆ H. But v 6= w and this contradicts the definition of
Herbrand model.

2.5.5. Theorem (Soundness) If C ` 2 then C is unsatisfiable.

Proof. If C were satisfiable, then a model of C would also be a model of the re-
solvents R1, . . . , Rs in the corresponding resolution deduction by Lemma 2.5.4.
But Rs = 2 and 2 is unsatisfiable.

2.5.6. Theorem (Lifting Lemma) Let C ′1 and C ′2 be ground instances of
clauses C1 and C2, respectively, and let R′ be a resolvent of C ′1 and C ′2. Then
there is a resolvent R of C1 and C2 s.t. R′ is a ground instance of R.

30 chapter 2. resolution

Proof. Let C ′1 = C1λ1 and C ′2 = C2λ2, and 〈D′1, D′2, A〉 be the key triple
for R with D′1 ⊆ C ′1 and D′2 ⊆ C ′2. D′1 and D′2 are ground, so the corresponding
mgu is the empty substitution, D′1 = {L′v} and D′2 = {L′w}. Let D1 and D2

be maximal subsets of C1 and C2, respectively, s.t. D1λ1 = D′1 and D2λ2 = D′2.
Since λ1λ2 is a unifier of at(D1∪D2), we have a key triple 〈D1, D2, at(D1∪D2)〉
with mgu σ. Since σ is more general than λ1λ2 we have that R′ is an instance
of R = (C1 \D1)σ ∪ (C2 \D2)σ.

2.5.7. Remark Note that the proof of the lifting lemma given in Chang and
Lee [1973] is flawed, as has been pointed out by Leitsch [1989]. This is also
the reason why we have followed Robinson’s [1965] original formulation of
resolution with key triples and implicit factoring as the starting point for the
generalization to the many-valued case.

2.5.8. Theorem (Completeness) If C is unsatisfiable then C ` 2.

Proof. By Proposition 2.4.5, the semantic tree T for A(C) of Example 2.4.3
is closed w.r.t. C, and hence (by Proposition 2.4.6), the corresponding reduced
tree R(T) is finite. We prove, by induction on the number of nodes in R(T),
that there is a resolution deduction of 2 from C.

If R(T) has only one node, then 2 must be in C, since no other clause is
falsified at the root of a semantic tree. Otherwise R(T) contains a node X, s.t.
its immediate successors X1, X2 are failure nodes. The edges leaving X are
labeled by {Au1} and {Au2}, u1 6= u2. There are ground instances C ′1 and C ′2
of clauses C1 and C2 in C s.t. I(X1) falsifies C ′1 and I(X2) falsifies C ′2, but I(X)
does not falsify either . Therefore, C ′1 must contain a literal Au1 and C ′2 must
contain a literal Au2 . Now 〈{Au1}, {Au2}, {A}〉 is a key triple for C ′1 and C ′2
with mgu id . We obtain the resolvent R′ = (C ′1 \ {Au1}) ∪ (C ′2 \ {Au2}). R′

fails at X, since otherwise there would be some literal L ∈ R′ with L /∈ I(X).
Assume L ∈ C ′1 \ {Au1}. Then L /∈ I(X1), contradicting the assumption that
C ′1 fails at X1. Similarly for L ∈ C ′2 \ {Au2}.

By the lifting lemma, there is a resolvent R of Ci and Cj , s.t. R′ is an
instance of R. T is also closed w.r.t. C ∪{R}, and the tree R(T)′ obtained from
R(T) by pruning at the first node that falsifies R′ (at worst, this is X) is a
proper subtree of R(T) containing all failure nodes. By induction hypothesis,
there is a resolution deduction of 2 from C ∪ {R}.

2.5.9. Proposition Any resolution deduction R from C can be rewritten as a
resolution deduction R′ in tree form where no variable renaming is necessary in
the resolution steps, possibly using renamed copies (variants) of clauses in C.

Proof. By induction on the length l of R = C1, . . . , Cl:

l = 1: C1 ∈ C. This proof is in tree form, R′ = R.

l > 1: Cl is the resolvent of clauses Ci, Cj where i, j < l. The deductions
of Ci and Cj from C have length < l. By induction hypothesis, they have tree

2.5. soundness and completeness 31

like deductions R1, R2. Then the deduction R′

.... R1

C1

.... R2

C2

Cl

is in tree form.
If we take vaiable-disjoint renamings of all topmost clauses and carry the

renamings through to the conclusion, then all resolved clauses are variable-
disjoint.

Being in tree form means that every clause occurence in R is used only once
in a resolution step. R can therefore be written as a tree, where the nodes
are the clauses in R. This tree has a well-defined height. We call resolution
proofs of the form given in the preceding proposition regular. If R contains
only ground clauses, then the corresponding proof in tree form uses only literal
copies of the clauses in R.

2.5.10. Definition The cumulative substitution ρ(R) of a regular resolution
proof is defined by induction on the height h of R:

h = 1: ρ(R) = id .
h > 1: R ends in a resolution of the form

.... R1

C1

.... R2

C2

C

with mgu σ. C1 and C2 are variable-disjoint. ρ(R) = (ρ(R1)ρ(R2))σ = (ρ(R1)∪
ρ(R2))σ.

Regular resolution proofs have the property that they can be grounded, as
the following lemma shows. This property will be used in the next section.

2.5.11. Lemma Let R be a regular resolution deduction of C from C. There is
a substitution γ which grounds R. That is, γ is s.t. Rγ contains only ground
clauses and Rγ is a resolution deduction of Cγ from Cγ.

Proof. Let var(R) be the set of all variables occurring in R. We define a
partition of var(R) = V1 ∪ . . . ∪ Vp by the equivalence relation x ∼ y ⇐⇒
xρ(R) = yρ(R). Let c1, . . . , cp be p new, distinct, constant symbols, and λ
the substitution mapping members of Vi to ci. Then γ = ρ(R)λ grounds R, if
Rρ(R) is a deduction of Cρ(R) from Cρ(R). But this follows from the definition
of ρ(R).

2.5.12. Remark The so-called ground projection is a standard notion in the
resolution literature. Cumulative substitutions exist for all (not only regular)
resolution proofs which have ground projections. See Baaz and Leitsch [1992]
for results relating proof complexity and ground projections. Their Theorem 3.6
also shows that the assumption of regularity in Lemma 2.5.11 is necessary.

32 chapter 2. resolution

2.6 Negative Resolution

2.6.1. Definition A negative clause C is a set of negations of signed atoms.
The positive translation C+ of a set of negative clauses C is the set of

clauses C obtained by replacing every negative clause {¬¬A1
w1 , . . . ,¬¬Anwn} by⋃n

j=1{Ajvi | vi 6= wj}. If D = C+, then we define C = D−.

The sfe corresponding to a negative clause and universal satisfiability are
defined analogous to the positive case. It is obvious that a set of negative
clauses is satisfiable iff its positive translation is. For this notion of clause the
appropriate notion of resolution is as follows:

2.6.2. Definition Let C1, C2, . . . , Cm be negative clauses s.t.
⋂m
i=1 var(Ci) =

∅, and let ¬¬Di ⊆ Ci be such that every literal in ¬¬Di is signed with the truth
value vi, If A = at(

⋃m
i=1 ¬¬Di) is unifiable with mgu σ, then 〈¬¬D1, . . . ,¬¬Dm, A〉

is called an negative key tuple (n-key tuple) with mgu σ for C1, C2, . . . , Cm.

2.6.3. Definition Let C ′1, C ′2, . . . , C ′m be clauses, let C1, C2, . . . , Cm be
variable disjoint renamings, respectively, and let 〈D1, . . . , Dm, A〉 be an n-key
tuple with mgu σ for C1, . . . , Cm. Then the clause (C1\D1)σ∪. . .∪(Cm\Dm)σ
is a resolvent of C ′1, . . . , C ′m.

Negative resolution will play a part in the cut-elimination theorem for neg-
ative sequent calculus in the next chapter. We need the following theorem:

2.6.4. Theorem (Soundness) If C ` 2 then C is unsatisfiable.

Proof. We prove that for every interpretation H satisfying C, if C `n C then
H satisfies C. By induction on the height h of the derivation tree of C from
C: If h = 1, then C ∈ C and hence is satisfied by every interpretation which
satisfies C. If h > 1, then let

C1 C2 . . . Cm
C

be the last resolution in the derivation, and let 〈¬¬D1, . . . ,¬¬Dm, A〉 be its n-
key tuple with mgu σ. Since D1, . . . , Dm are unifiable, we can simulate the
step by a sequence of positive resolutions on the positive translations: Let
¬¬Ci = ¬¬Ei ∪ ¬¬Di, and let C̄i, Ēi and D̄i be the positive translations of ¬¬Ci,
¬¬Ei and ¬¬Di, respectively. By D̄v

i we denote those elements of D̄i with sign v.
We show that there is a positive resolution derivation of C̄ from {C̄1, . . . , C̄m}
or, equivalently, a deduction of 2 from {D̄1, . . . , D̄m}.

In general, call a set of clauses F = {F1, . . . , Fl+1} contractible iff F is
unifiable, for every Fi there is a set Wi = {w1, . . . , wm−l} of truth values s.t.
wj ∈Wi iff F

wj

i is empty, and for every 1 ≤ i ≤ l+ 1 there are truth values wi,
wi ∈ Wi (not necessarily distinct) s.t. for all j > i, wi /∈ Wj and for all k < i,
wi /∈Wk.

It is easy to see that {D̄1, . . . , D̄m} is contractible with l = m−1, Wi = {vi},
wi = wi = vi. We show by induction on l that 2 is derivable by positive
resolution from a contractible set F :

2.6. negative resolution 33

l = 0: This means F = {2}. (Note that {2} is contractible.)
l > 0: We have F = {F1, . . . , Fl+1}. Let 1 ≤ i ≤ l and consider Fi and

Fi+1. F
wi+1

i and F
wi
i+1 are nonempty. Hence we have that Fi and Fi+1 have a

resolvent Gi with key triple 〈Fwi+1

i , F
wi
i+1, at(F

wi+1

i ∪ F uii+1)〉. The set of clauses
G = {G1, . . . , Gl} is contractible: For Gi, the corresponding set W ′i is Wi∪Wi+1

having m− l + 1 elements, u′i = ui and w′i = wi+1.
The following diagram illustrates the case of m = 4.

l m− l ¬¬A1 ¬¬A2 ¬¬A3 ¬¬A4

3 1 A2, A3, A4 A1, A3, A4 A1, A2, A4 A1, A2, A3

1 2 3 4
2 2 A3, A4 A1, A4 A1, A2

1, 2 2, 3 3, 4
1 3 A4 A1

1, 2, 3 2, 3, 4
0 4 2

1, 2, 3, 4

Note how the lists of signed A’s form a tree-like resolution deduction of the
empty clause.

2.6.5. Lemma (Lifting Lemma) Let C ′1, C ′2, . . . , C ′m be ground instances of
clauses C1, C2, . . . , Cm, respectively, and let C ′ be a negative resolvent of C ′1,
C ′2, . . . , C ′m. Then there is a negative resolvent C of C1, C2, . . . , Cn s.t. C ′ is
a ground instance of C.

Proof. Analogous to the positive case.

2.6.6. Lemma Let R′ be a ground proof of C ′ from C′, where C′ is a ground
instance of C. Then there is a proof R of C from C, s.t. C ′ is a ground instance
of C.

Proof. By induction on the height h of R′:
h = 1: Then C ′ ∈ C′, and hence R consist only of the clause C.
h > 1: R′ ends in a resolution step from the clauses C ′1, . . . , C ′m. If C ′i is a

topmost clause, then it is a ground instance of some clause Ci ∈ C. Otherwise,
C ′i is the last clause in a resolution deduction R′i. By induction hypothesis,
there is a resolution deduction Ri of Ci from C where C ′i is a ground instance
of Ci. From the lifting lemma, we know that there is some C of which C ′ is a
ground instance, s.t. C is a resolvent of C1, . . . , Cm.

2.6.7. Theorem (Completeness) If C is unsatisfiable then C ` 2.

Proof. Since C+ is unsatisfiable, there is a regular resolution deduction R
of 2 from C+ of length l. By Lemma 2.5.11, R can be grounded, resulting in a
ground proof R′ of 2 from a ground instance C′+. We translate this deduction
into a negative deduction ν(R′) of 2 by induction on the height h or R′:

34 chapter 2. resolution

h = 1: Then 2 ∈ C.
h > 1: We proceed in three stages: (1) First, we mark those literals through-

out the proof, which result in the last literals resolved upon (in a sense to be
made more precise). This results in a proof where some groups of literals in the
initial clauses are marked. Every such group is the positive translation of one
negative literal in the original set of negative clauses. (2) The proof is pruned
by omitting each of these groups from the initial clauses, one at a time. This
results in several proofs of 2 of height less than h from subclauses of the initial
clauses (all of which are positive translations of subclauses of the original neg-
ative clauses). (3) The induction hypothesis is applied to these proofs, yielding
negative proofs of 2 from subclauses of the original negative clauses. (4) We
add the negative translations of the groups that were left out in step (2), ob-
taining several negative proofs of clauses of the form {¬¬P v}. The set of all these
clauses is inconsistent, since there is a subproof of R′ of 2 from their positive
translations. Hence there is one such clause for each v ∈ V , and furthermore,
P is of the same form in all of these clauses. (5) By resolving, we obtain a
negative ground proof of 2 from ground instances of C. By Lemma 2.6.6, there
is a negative resolution proof of 2 from C.

(1) Let R′ be as follows:

.... R
′
1

{Avi}

.... R
′
2

{Avj}
2

We introduce an indexing system of literals in R′. The initial clauses C′+ are
the positive translations of negative clauses in C′. We provide every literal in
C′ by an index s.t. no two occurrences of literals in C′ have the same index. If
¬¬Bw ∈ C ′ ∈ C′ and the index of ¬¬Bw is x, then we write the indexed literal as
¬¬xBw. The indexes are extended to literals in the positive translation of C: If∨
v∈V \w B

v is the positive translation of ¬¬xBw, then all the Bv are indexed by
x, too. So, if {¬¬x1A

w1
1 , . . . ,¬¬xnAwn

n } ∈ C′, then

{x1Av1 | v ∈ V \ w1} ∪ . . . ∪ {xnAvn | v ∈ V \ wn} ∈ C′+

This way, all literals in R′ are marked.
Define the operator u(S) on indexed ground proofs S inductively as follows:

If S is only an initial clause, then u(S) = S. Otherwise, S ends in a resolution
step:

.... S1

D1 ∪ {xAw1}

.... S2

D2 ∪ {yAw2}
D1 ∪D2

let D′i ∪ {x′Avi} be the last clause of u(Si) (i = 1, 2). Then u(S) is

.... u(S1)

D′1 ∪ {x′Aw1}

.... u(S2)[x/y]

D′2[x/y] ∪ {x′Aw2}
D′1 ∪D′2[x/y]

where [x/y] means that the index y is replaced everywhere by the index x.

2.6. negative resolution 35

Furthermore, we introduce an operator d(S, C, X) which is defined for an
indexed ground proof u(S), a set of initial clauses C and a set of indices X as
follows:

h = 1: u(S) is only the initial clause D: if D ∈ C, then d(S,X) = D∗,
where D∗ is the clause obtained from D by omitting every literal indexed by
some index x ∈ X. Otherwise d(S,D,X) = D.

h > 1: u(S) is of the form

.... S1

D1 ∪ {yAw1}

.... S2

D2 ∪ {yAw2}
D1 ∪D2

where C = D1 ∪ D2. Let D∗i be the last clause in d(Si, C,X) (i = 1, 2). If

yA
w1 /∈ D∗1, then d(S,C,X) = d(S1, C,X). If yA

w2 /∈ D∗2, then d(S,C,X) =
d(S2, C,X). Otherwise, let d(S,X) be

.... d(S1, C,X)

D∗1

.... d(S2, C,X)

D∗2
D∗1 \ {yAw1} ∪D∗2 \ {yAw2}

Intuitively, u specifies a relation among literal occurrences in the indexed proof
S where all literals are either related by having the same negative literal as
their common ancestor, or are related to literals which are resolved upon in
the proof. The operator s then is the pruning operator, parametric on a set of
inices X. Given an indexed proof S, d(S, C, X) is the proof resulting from S by
deleting all literals indexed by members of X from the initial clauses C and all
resolutions acting on such literals.

(2) We have indexed the proofs R′1 and R′2, resulting in indexed proofs
of {xAvi} and {xAvj}, respectively. Let C1,1, . . . , C1,p and C2,1, . . . , C2q be
the initial clauses of R1 and R2 respectively. By applying d, we obtain proofs
d(R′1, {C1,i}, {x}) (1 ≤ i ≤ p) and d(R′2, {C2,j}, {x}) (1 ≤ j ≤ q) with 2 as their
last clause. (3) These proofs are of length < h, hence the induction hypothesis
applies. This yields negative resolution proofs N1,i and N2,j of 2 from initial
clauses among {D−1,i}i and {D−2,j}j , respectively. In Nr,s, the initial clause D−r,k
is the negative translation of Cr,k if k 6= s and the negative translation of
d(Cr,k, Cr,k, {x}) otherwise.

(4) By adding the negative literals ¬¬Lvr,sr,s omitted from clause Cr,s in Nr,s

again we obtain proofs N ′r,s of {¬¬Lvr,sr,s }. Now consider the original proof R′.
Its pruning d(R′, C, I \ {x}) is a proof of 2 from the positive translations of the
clauses in N = {{¬¬Lvr,sr,s } | r, s}. This ensures that all Lr,s are actually equal
(i.e., unifiably with unifier id). Furthermore, the set of all vr,s is the whole
set of truth values V . For if there were some w ∈ V which is not among the
vr,s, the structure which makes Lr,s take the value w satisfies N+. But this is
impossible, since N is unsatisfiable.

(5) Thus, we obtain a negative resolution proof R′− of 2 from C′. By
Lemma 2.6.6, there is a negative resolution proof of 2 from C.

36

Chapter 3

Sequent Calculus

3.1 Introduction

Sequent calculus was introduced by Gentzen [1934] for classical and intu-
itionistic logic and has since proved to be an important formalism for proof
theoretic studies of formal systems. Gentzen’s sequents are expressions of the
form Γ → ∆, where Γ and ∆ are finite sequences of formulas. The full calcu-
lus consists of axioms of the form A → A, rules for introducing propositional
connectives resp. quantifiers in the left and right sides of the sequent, as well
as structural rules (among them the cut rule).

The sequent notation can be interpreted in two different ways: firstly, as
expressing entailment. A sequent A → B stands for: A entails B, or more
generally: Γ → ∆ stands for: the conjunction of the formulas in Γ entails
the disjunction of the formulas in ∆. Secondly, the sequent may be interpreted
truth-functionally: either one of the formulas in Γ is false or one of the formulas
in ∆ is true. For classical logic, these two interpretations coincide, since the
truth-functional characterization is equivalent to the derivability of

∧
Γ ⊃

∨
∆,

and this, by the deduction theorem, to
∧
Γ `

∨
∆.

For many-valued logics, however, these notions are in general distinct, and
we have two fundamental alternatives as to what we mean by “sequent calcu-
lus for a many-valued logic”: Firstly, we can seek to formalize the entailment
relation (or, if we have a complete axiomatization of a given many-valued logic,
of derivability) as a sequent calculus. Avron [1992] has developed a general
theory of consequence relations for logics, and has also applied this to the study
of 3-valued logics in his [1991], where he gives a calculus of hypersequents for
 Lukasiewicz logic.

Here, we will take the second approach via truth-functionality, a property
every many-valued logic has. For this, we need a sequent with one place for
every truth value in the logic: Γ1 | Γ2 | . . . | Γm, where m is the number of
truth values. We interpret this sequent as true under a given interpretation
iff one of the Γi contains a formula that takes the value vi. From this point
of view, we then see axioms as expressing the fact that every formula must
take at least one truth value, and introduction rules as characterizing the truth
value of a composite formula in terms of its subformulas. Yet we may also take
another, in a sense dual standpoint: A sequent is true under an interpretation,

37

38 chapter 3. sequent calculus

if one of the Γi contains a formula that does not take the value vi. Then, an
axiom comes to state the fact that a formula may take at most one truth value.
An introduction rule can be viewed as a rule for how to falsify a composite
formula by falsifying a subformula. This second interpretation corresponds, in
the classical case, exactly to the semantic tableaux of Beth [1955]. We call the
first interpretation positive, the second negative.

These two perspectives give rise to two different, but closely related, sets
of calculi for a many-valued logic—not only two sequent calculi, but also two
tableau systems, two natural deduction systems, and two clause translation
calculi (for positive and negative resolution, respectively). This correspondence
has been described in Baaz et al. [1993b].

This approach has often been used in the literature, and people have rein-
vented the wheel over and over again. The works differ in notation, and in
degrees of generality. Some have used the positive, some the negative approach.

The first to introduce a calculus of sequents for many-valued logics (for the
propositional case) seems to have been Schröter [1955]. He used the negative
approach. His method of axiomatization has also been given treatment in the
textbook of Gottwald [1989].

Seemingly independent, Rousseau [1967] treated sequent calculus for first-
order finitely-valued logics in full generality and also gave soundness and com-
pleteness proofs. In Rousseau [1970] he investigated generalizations of in-
tuitionistic sequent calculus LJ to the many-valued case (with a concept of
sequent distinct from the one in his [1967]). Takahashi [1967a] considers a
sequent calculus for first-order many-valued logics with universal and existen-
tial quantifiers. Interpolation and definability theorems are proven using this
calculus by Miyama [1974], and Hanazawa and Takano [1985]. In Taka-
hashi [1970] a very general Gentzen-style proof theory for continuous logics,
i.e., many-valued logics over a topological space as the set of truth values,
has been developed. The model theory of continuous logics has been worked
out in Chang and Keisler [1966]. Ohya [1967] extended the formalism of
Takahashi [1967a] to a system of simple type theory, for which he also shows
cut-elimination along the lines of Takahashi [1967b].

After Schröter’s work, the negative approach has been taken also by
Borowik [1985] for the propositional case only. Earlier, Becchio and
Pabion [1977] have outlined a negative sequent calculus for three-valued
 Lukasiewicz logic. A tableau system for m-valued Lukasiewicz logic was
given in Suchoń [1974]. Similar work has been done on equivalent tableau
systems starting with Surma [1977] and Carnielli [1987b]. Recently,
Carnielli [1991] has presented a notational variant of our negative sequent
calculi, based on his work on tableau calculi for many-valued logics in [1987b].
Hähnle [1992, 1993a] presents an in-depth study of many-valued tableaux sys-
tems. He introduces several refinements such as sets-as-signs, and investigates
classes of many-valued logics (e.g., so-called normal logics) where rules can be
efficiently and uniformly represented.

Several other papers deal with sequent calculi for specific many-valued log-
ics, in particular Post logic. Kirin [1966] has given sequent calculi based on
semantic considerations in Post algebras (see also his [1968]). Similar work was

3.2. semantics of sequents 39

done by Rasiowa [1972], Saloni [1972], and Przymusińska [1980a].

3.2 Semantics of Sequents

3.2.1. Definition An (m-valued) sequent Γ is an m-tuple Γ1 | . . . | Γmof finite
sequences Γi of formulas. If Γ is a sequent, then Γi denotes the i-th component
of Γ .

If ∆ is a sequence of formulas and I ⊆ M = {1, . . . ,m} (or W ⊆ V),
we denote by [I:∆] ([W :∆]) the sequent whose i-th component is ∆ if i ∈ I
(vi ∈ W), and is empty otherwise. For [{i1, . . . , ik}:∆] ([{w1, . . . , wk}:∆]) we
write [i1, . . . , ik:∆] ([w1, . . . , wk:∆]). If Γ and Γ ′ are sequents, then we write
Γ, Γ ′ for the sequent Γ1, Γ

′
1 | . . . | Γm, Γ ′m.

3.2.2. Definition Let I be an interpretation. I p-satisfies (n-satisfies) a se-
quent Γ iff there is an i (1 ≤ i ≤ m) s.t., for some formula F ∈ Γi, valI(F) = vi
(valI(F) 6= vi). I is called a p-model (n-model) of Γ and we write I |=p Γ
(I |=n Γ).

Γ is called p-satisfiable (n-satisfiable) iff there is an interpretation I s.t.
I |=p Γ (I |=n Γ), and p-valid (n-valid) iff for every interpretation I, I |=p Γ
(I |=n Γ).

Evidently, these two notions of satisfiability resp. validity are distinct: an
interpretation may be a p-model of a sequent, but not an n-model; a sequent
may be p-satisfiable but not n-satisfiable; it may be p-valid but not n-valid (or
vice versa).

3.2.3. Example To see how the notion of many-valued sequent is a general-
ization of the classical case, consider PL with V = {f, t}: A sequent takes the
form Γ | ∆ (usually written Γ → ∆). It is p-satisfied if some formula in Γ is
false or some formula in ∆ is true. It is n-satisfied if some formula in Γ is true
or some formula in ∆ is false. The calculus resulting from p-satisfaction is the
calculus given by Gentzen [1934], the one from n-satisfaction corresponds to
Beth’s 1955 tableaux. If we exchange t and f , then we also obtain Gentzen’s
system from n-sequents (cf. Carnielli [1991], p. 66). However, in the general
case the correspondence is not one of “trivial” duality as in the classical case:
you cannot in general pass from the positive to the negative system just by
switching the sides of the sequents.

We can employ the metaformalism of sfes introduced in Chapter 1 to study
the connection between p- and n-sequent calculi. The notions of satisfaction and
validity of p- and n-sequents can be straightforwardly translated by interpreting
sequents as sfes of a certain form: A sequent Γ corresponds to the sfe

psfe(Γ) =
∨∨
A∈Γ1

Av1 ∨∨ . . . ∨∨
∨∨
A∈Γm

Avm

modulo p-satisfiability and to

nsfe(Γ) =
∨∨
A∈Γ1

¬¬Av1 ∨∨ . . . ∨∨
∨∨
A∈Γm

¬¬Avm

40 chapter 3. sequent calculus

modulo n-satisfiability. Note how the first sfe-translation of a sequent corre-
sponds to a positive clause as in Definition 2.2.1, and of the second to a negative
clause as in Definition 2.6.1.

We can now apply the metatheory of sfes to sequents. P-satisfiability cor-
responds to reading a sequent as a positive disjunction, and n-satisfiability to
reading it as a negative disjunction of signed formulas. Call the translation
of a sequent to a disjunction of positive signed formulas a p-sequent, and the
translation to a negative disjunction an n-sequent. In light of Proposition 1.4.6,
any sfe can be expressed as a conjunction of p- or n-sequents, and a conjunc-
tion of p-sequents (n-sequents) can be transformed to an equivalent conjunction
of n-sequents (p-sequents) by Proposition 1.4.5. The negation of a p-sequent
(n-sequent) is equivalent to a conjunction of n-sequents (p-sequents). Propo-
sition 1.4.8 provides us with a relation between validity of a sequent and the
unsatisfiability of its negation. For the special case where the sequent contains
only one formula i:A we obtain the following:

3.2.4. Proposition A sequent [i:A] is p-unsatisfiable (n-unsatisfiable) iff it is
n-valid (p-valid).

Proof. The negation of the p-sequent Avi is the n-sequent ¬¬Avi . The claim
follows from Proposition 1.4.8.

On the other hand, the n-sequent ¬¬Avi can also be written as a p-sequent∨∨
j 6=iA

vj , and hence the p-unsatisfiability of [i:A] can be established by proving
[V \ {vi}:A] p-valid. Proposition 3.2.4 gives us as an alternative to proving the
latter sequent in order to establish the unsatisfiability of [i:A]. Instead, we can
use a complete (w.r.t. n-validity) calculus for proving [i:A] n-valid and, hence,
p-unsatisfiable. This is of value especially if there is only one designated truth
value:

3.2.5. Proposition Let F be a formula. Then the following are equivalent:

(1) F is a tautology

(2) The sequent [V +:F] is p-valid

(3) The sequents [j:F], where j ∈ V \ V +, are all n-valid.

3.2.6. Proposition Let F be a formula. Then the following are equivalent:

(1) F is a unsatisfiable

(2) The sequent [V \ V +:F] is p-valid

(3) The sequents [j:F], where j ∈ V +, are all n-valid.

3.3. construction of sequent calculi 41

3.3 Construction of Sequent Calculi

3.3.1. Definition Let
∧∧
j∈I ∆2:i(j) be a positive (negative) i-th partial normal

form of 2(A1, . . . , An) (¬¬2(A1, . . . , An)), where 2 is of arity n, ∆2:i(j) is a
disjunction of signed atoms (literals) of the form Ai

w (¬¬Aiw), where 1 ≤ i ≤ n,
and let ∆′2:i(j) be the sequent corresponding to ∆2:i(j).

A p- (n-) introduction rule for 2 at place i is a schema of the form:

〈Γ,∆′2:i(j)〉j∈I
Γ, [i:2(A1, . . . , An)]

2:i

3.3.2. Example Consider the implication in three-valued Lukasiewicz logic L3

given in Example 1.3.3. The partial normal forms from Example 1.5.3 yield the
following introduction rules for P L3:

Γ | ∆ | Π,A Γ,B | ∆ | Π
Γ,A ⊃ B | ∆ | Π ⊃:f

Γ | ∆,A | Π,A Γ | ∆,A,B | Π Γ,B | ∆ | Π,A
Γ | ∆,A ⊃ B | Π

⊃:p

Γ,A | ∆,A | Π,B Γ,A | ∆,B | Π,B
Γ | ∆ | Π,A ⊃ B ⊃:t

and the following rules for N L3:

Γ | ∆ | Π,A Γ,B | ∆ | Π,A
Γ,A ⊃ B | ∆ | Π ⊃:f

Γ,A | ∆,A | Π Γ | ∆,B | Π,A
Γ | ∆,A ⊃ B | Π

⊃:p

Γ,A | ∆ | Π Γ | ∆ | Π,B Γ | ∆,A,B | Π
Γ | ∆ | Π,A ⊃ B ⊃:t

3.3.3. Definition Let
∧∧
j∈I ∆Q:i(j) be a positive (negative) i-th partial normal

form of (Qx)A(x) (¬¬(Qx)A(x)), where ∆Q:i(j) is a disjunction of signed atoms
(literals) of the form A(α)w or A(τ)w (¬¬A(α)w or ¬¬A(τ)w), and let ∆′Q:i(j) be
the sequent corresponding to ∆Q:i(j)

A p- (n-) introduction rule for Q at place i is a schema of the form:〈
Γ,∆′Q:i(j)

〉
j∈I

Γ, [i: (Qx)A(x)]
Q:i

where the free variables α occurring in the ∆′Q:i(j) satisfy the eigenvariable
condition: No α occurs in the lower sequent.

In an introduction rule as above, the formula—2(A1, . . . , An) or (Qx)A(x)—
being introduced is called the main formula, the formulas in ∆f :i(j) are called
the auxiliary formulas and the formulas in Γ are called the side formulas. The
sequents above the line are called the upper sequents or premises, the sequent
below the line is called the lower sequent or the conclusion of this rule.

42 chapter 3. sequent calculus

3.3.4. Example Consider the universal quantifier ∀ in the three-valued
 Lukasiewicz logic L3. From the pnfs in Example 1.5.7 we obtain the follow-
ing rules:

Γ,A(τ) | ∆ | Π,A
Γ, (∀x)A(x) | ∆ | Π ∀:f

Γ | ∆ | Π,A(α)

Γ | ∆ | Π, (∀x)A(x)
∀:t

Γ | ∆,A(α) | Π,A(α) Γ | ∆,A(τ) | Π
Γ | ∆, (∀x)A(x) | Π ∀:p

3.3.5. Definition A p-sequent calculus PL for a logic L is given by:

(1) axiom schemas of the form: [V :A],

(2) for every connective 2 and every truth value vi a p-introduction rule 2:i,

(3) for every quantifier Q and every truth value vi a p-introduction rule Q:i,

(4) weakening rules for every place i:

Γ
Γ, [i:A]

w:i

(5) exchange rules for every place i:

Γ, [i:B,A], ∆

Γ, [i:A,B], ∆
x:i

(6) contraction rules for every place i:

Γ, [i:A,A]

Γ, [i:A]
c:i

(7) cut rules for every two i 6= j:

Γ, [i:A] ∆, [j:A]

Γ,∆
cut:ij

(2) and (3) are called logical rules, (4)–(7) are called structural rules.

3.3.6. Definition An n-sequent calculus NL for a logic L is given by:

(1) axiom schemas of the form: [i, j:A], where i 6= j,

(2) for every connective 2 and every truth value vi an n-introduction rule 2:i,

(3) for every quantifier Q and every truth value vi an n-introduction rule Q:i,

(4) weakening rules for every place i:

Γ
Γ, [i:A]

w:i

3.3. construction of sequent calculi 43

(5) exchange rules for every place i:

Γ, [i:B,A], ∆

Γ, [i:A,B], ∆
x:i

(6) contraction rules for every place i:

Γ, [i:A,A]

Γ, [i:A]
c:i

(7) the cut rule:
Γ1, [1:A] . . . Γm, [m:A]

Γ1, . . . , Γm
cut

(2) and (3) are called logical rules, (4)–(7) are called structural rules.

3.3.7. Definition An upward tree P of sequents is called a proof in a sequent
calculus SL iff every leaf is an instance of an axiom in SL, and all other sequents
in it are obtained from the ones standing immediately above it by an application
of one of the rules of SL. The sequent at the root of P is called its end-sequent.
A sequent Γ is called provable in SL (in symbols: `SL Γ) iff it is the end-sequent
of some proof (in SL). In the case of PL (NL), we say that Γ is p-provable
(n-provable).

3.3.8. Theorem (Soundness for PL) If a sequent is p-provable, then it is p-
valid.

Proof. By induction on the length l of a proof of a sequent Π.
l = 1: Π is an axiom. Since every formula takes some truth value, the

disjunction over all truth values is always true.
l > 1: Π is the conclusion of a rule of inference. Let I be an interpretation.

The induction hypothesis is that all upper sequents are p-valid, and in particular
that each is satisfied by I. We distinguish cases according to the rule J applied
last:

(1) J is a weakening: I |=p Π since A implies A or B.

(2) J is an exchange: I |=p Π since disjunction is commutative.

(3) J is a contraction: I |=p Π since A or A implies A.

(4) J is a cut: The upper sequents are Γ, [i:A] and Γ ′, [j:A] (i 6= j), and Π =
Γ, Γ ′. Now either I |=p Γ , in which case also I |=p Γ, Γ ′, or I |=p [i:A].
But then I 6|=p [j:A] and hence I |=p Γ ′.

(5) J is an introduction rule for a propositional connective 2 at place i: The
upper sequents are instances Γ,∆′′2:i(j) and Π = Γ, [i:2(A1, . . . , An)]. If
I |=p Γ , then also I |=p Π. Otherwise, I |=

∧∧
psfe(∆′′2:i(j)). Hence, by

Definitions 3.3.1 and 1.5.1 we have that I |=p [i:2(A1, . . . , An)].

44 chapter 3. sequent calculus

(6) J is an introduction rule for a quantifier Q at place i: The up-
per sequents are instances Γ,∆′′Q:i(j), and Π = Γ, [i: (Qx)A(x)]. If
I |=p Γ , then also I |=p Π. Otherwise, I |=

∧∧
psfe(∆′′Q:i(j)). Note

that in ∆′′Q:i(j) (and psfe(∆′′Q:i(j))) terms t1, . . . , tp take the place
of the term variables and free variables a1, . . . , aq take the place of
the eigenvariables. Since a1, . . . , aq do not occur in Γ , we have
that for all d1, . . . , dq ∈ D, there are e1, . . . , ep ∈ D—namely
ΦI(t1[d1/a1, . . . , dq/aq]), . . . , ΦI(tp[d1/a1, . . . , dq/aq])—such that I |=∧∧

psfe(∆′′Q:i(j)[d1/a1, . . . , dq/aq, e1/t1, . . . , ep/tp]) (Note that the ei may
actually depend on the dj , since the terms may contain eigenvariables).
Hence, by Definitions 3.3.3 and 1.5.5, we have that I |=p [i: (Qx)A(x)].

3.3.9. Theorem (Soundness for NL) If a sequent is n-provable, then it is n-
valid.

Proof. The proof is analogous to the case for p-sequent calculus, simply
replace |=p by |=n and psfe(·) by nsfe(·) throughout the proof. The cases of
axioms and cut rules are handled as follows:

Π is an axiom, say [i, j:A]. Let I be an interpretation. If I |= ¬¬Avi or
I |= ¬¬Avj then I |=n [i, j:A]. Since A can take only one truth value, these are
the only possible cases.

(4′) J is a cut: The upper sequents are Γi, [i:A] 1 ≤ i ≤ m, and Π =
Γ1, . . . , Γm. Now either I |=n Γ1, in which case also I |=n Π. Other-
wise I |=n [1:A]. But then I 6|=n [i:A] for all 2 ≤ i ≤ m, hence I |=n Γi
and a fortiori I |=n Π.

3.3.10. Theorem (Completeness for PL) If a sequent is p-valid, then it is p-
provable without cuts from atomic axioms.

Proof. We use the method of reduction trees, due to Schütte [1956] (see also
Takeuti [1987], Ch. 1, § 8). We show that every sequent Γ is either provable
in the sequent calculus or has a counter-model.

Let E be an enumeration of all tuples of terms over L. Call a free variable
available at stage k iff it occurs in the tree constructed before stage k (if there
is no such variable, pick any and call it available) and new otherwise. A p-
tuple t̄ of terms is available for the reduction of a formula F at place i with
eigenvariables a1, . . . , aq at stage k on a branch B iff

(1) t̄ contains only variables which are available at stage k or which are among
a1, . . . , aq, and either

(2a) t̄ has not been used at all for a reduction of F at place i on B in a stage
before k, or

(2b) the pre-instance of the premise lying on B of a reduction of F at place i in
a stage before k where t̄ has been used did not contain any term variables.

3.3. construction of sequent calculi 45

A reduction tree TΓ is an upward, rooted tree of sequents constructed from Γ
in stages as follows:

Stage 0: Write Γ at the root of the tree.

Stage k: If the topmost sequent Γ ′ of a branch contains an atomic formula A
s.t. A ∈

⋂
j∈I Γ

′
j then stop the reduction for this branch. Call a branch open if

it does not have this property.

Repeat the following reduction steps for every formula F occurring at place i
in the topmost sequent Γ ′ of an open branch, which has neither already been
reduced at place i on this branch in this stage, nor is the result of a reduction
at this stage:

(1) F ≡ 2(A′1, . . . , A
′
n): Replace Γ ′ in the reduction tree by:

〈Γ ′, ∆′′2:i(j)〉j∈I
Γ ′

where ∆′′2:i(j) is an instance of ∆′2:i(j) in the rule 2:i introducing F as in
Definition 3.3.1, obtained by instantiating A1, . . . , An with A′1, . . . , A′n,
respectively.

(2) F ≡ (Qx)A′(x): Let a1, . . . , ap be all eigenvariables and t1, . . . , tq be all
term variables in the premises of the rule schema Q:i. Replace Γ ′ in the
reduction tree by: 〈

Γ ′, ∆′′Q:i(j)
〉
j∈I

Γ ′

where ∆′′Q:i(j) is an instance of ∆′Q:i(j) in Q:i introducing F as in Defi-
nition 3.3.3, obtained by instantiating A with A′, the eigenvariables α1,
. . . , αq with the first q-tuple a1, . . . , aq of new free variables in the enu-
meration E, and the term variables τ1, . . . , τq with the first (w.r.t. E)
p-tuple t1, . . . , tp of terms which is available for the reduction of F at
place i with eigenvariables a1, . . . , aq at stage k on B. Observe that
F ∈ Γ ′i and thus occurs in all upper sequents.

If TΓ is finite, then every topmost sequent contains an atomic formula that
occurs at each place in that sequent. A cut-free proof of Γ from axioms contain-
ing these formulas is easily constructed by inserting weakenings and exchanges.

If TΓ is infinite it has an infinite branch B by König’s Lemma. For every
atomic formula P (t1, . . . , tn) in B, there is an l, 1 ≤ l ≤ m, s.t. P (t1, . . . , tn)
never occurs at position l in any sequent on B. We construct an interpreta-
tion I as follows: the domain is the set of terms, ΦI(t) = t (t a term), and
ΦI(P (t1, . . . , tn)) = vl, where vl is the truth value corresponding to the place l.

If F is a formula occurring in B, and F occurs at place i anywhere in B,
then valI(F) 6= vi. This is seen by induction on the complexity of F :

(1) F is atomic: valI(F) 6= vi by the construction of I.

46 chapter 3. sequent calculus

(2) F ≡ 2(A1, . . . , An): F is reduced somewhere in B. Let ∆′′2:i(j) be the
main formulas in the corresponding premises. By induction hypothesis
none of the Al in the premise that belongs toB evaluates to the truth value
corresponding to its place in the premise. In other words, if Γ ′, ∆′′2:i(k) is
the premise on B, the induction hypothesis says that I 6|=p ∆′′2:i(k), and
hence I 6|=

∧∧
j psfe(∆′′2:i(j)). By Definitions 3.3.1 and 1.5.1, I(F) 6= vi.

(3) F ≡ (Qx)A(x): F is reduced somewhere in B. Let ∆′′′Q:i(j) be the pre-
instances of the main formulas in the premises, corresponding to ∆′′Q:i(j).
In particular, let ∆′′′Q:i(k) be the one on B, and let α1, . . . , αr be the
eigenvariables and τ1, . . . , τs be the term variables occurring in it.

Now consider the substitution instances of A(x) occurring on B above the
lowermost reduction of F : F is reduced in every stage above this one in B.
We want to show that for all terms (i.e., domain elements) t1, . . . , tp there
are terms t′1, . . . , t′q s.t. I 6|=p ∆′′′Q:i(l)[t1/τ1, . . . , tp/τp, t

′
1/α1, . . . , t

′
q/αq].

Obviously, we need only consider the term- and eigenvariables actually oc-
curring in ∆′′′Q:i(l). If ∆′′′Q:i(k) contains an eigenvariable α, then in ∆′′Q:i(k)
this α is replaced by a free variable a, and by induction hypothesis, A(a)
does not take the truth value at which it stands (in ∆′′′Q:i(l)). If ∆′′′Q:i(l)
contains a term variable τ , we have two cases:

(a) There are infinitely many reductions of F on B s.t. the pre-instance
of the corresponding premise on B contains a term variable. Hence,
B contains infinitely many occurrences of instances of A[t/τ] where t
is any term, and in fact all such instances (This follows from the way
available tuples of terms are chosen). None of these instances take
the truth values corresponding to the place at which they stand (in
∆′′′Q:i(j)). Together with what has been said above for the eigenvari-
ables, it follows that I 6|=p ∆′′′Q:i(l)[t1/τ1, . . . , tp/τp, t

′
1/α1, . . . , t

′
q/αq]

and hence that valI(F) 6= vi by Definition 1.5.5.

(b) The reductions of F on B yield only a finite number (including zero)
of instances A[t/τj] on B because there are only finitely many reduc-
tions of F on B at place i whose pre-instances of premises on B con-
tain term variables. Since F is reduced infinitely often on B, there is
a first reduction where the pre-instance of the corresponding premise
on B contains no term variables and such that all reductions above
it share this property. Let ∆̃′′′Q:i(l

′) be the corresponding pre-instance

of the premise on B. ∆̃′′′Q:i(l
′) contains only eigenvariables, and we

have that I 6|=p ∆̃′′Q:i(l
′) for the corresponding instance (by induction

hypothesis) and hence that valI(F) 6= vi by Definition 1.5.5.

In particular, no formula in Γ evaluates to the truth value corresponding to the
position at which it stands. Hence I does not p-satisfy Γ .

3.3.11. Corollary Let A be any formula. [V :A] is provable in PL without
cuts from atomic axioms.

3.4. equivalent formulations of sequent calculi 47

Proof. Since [V :A] is valid, the construction of T[V :A] terminates and gives a
cut-free proof with atomic axioms.

3.3.12. Theorem (Completeness for NL) If a sequent is n-valid, then it is n-
provable without cuts from atomic axioms.

Proof. The construction of the reduction tree for a sequent Γ is as in the
positive case, only that a branch with topmost sequent Γ ′ is closed, if there is
a formula A s.t. A ∈ Γ ′i and A ∈ Γ ′j for i 6= j.

If TΓ is infinite it has, again, an infinite branch B by König’s Lemma. For
every atomic formula P (t1, . . . , tn) there is at most one position i where it ever
appears in the sequents of B. We construct an interpretation I as follows: the
domain is the set of terms, ΦI(t) = t (t a term) and ΦI(P (t1, . . . , tn)) = vi,
where vi is the truth value corresponding to the position i.

If F is a formula occurring in B, and F occurs at place i anywhere in B,
then valI(F) = vi. This is proved as in the positive case, mutatis mutandis.
In particular, every formula in Γ evaluates to the truth value corresponding to
the position at which it stands. Hence I does not n-satisfy Γ .

3.4 Equivalent Formulations of Sequent Calculi

The way we defined sequent calculus is the one closest to Gentzen’s original
definition. There are several minor modifications to the definitions that can be
made, concerning the structural rules and the sequents as sequences of formulas,
according to taste and convenience. First of all, it is possible to divide the side
formulas of introductions similar to the way the cuts are defined, as follows:

3.4.1. Definition Let f be 2 or Q, let F be 2(A1, . . . , An) or (Qx)A(x),
respectively, and let ∆′f :i(j) be as in Definition 3.3.1 or 3.3.3, respectively.
Then the following is called a combinational rule:〈

Γj , ∆
′
f :i(j)

〉
j∈I

Γ, [i:F]
f :i

where Γ = 〈Γj | j ∈ I〉. Furthermore, we allow an inference to be made, even
if only subsequents of ∆′f :i(j) are present in the premises.

The resulting calculus is called the combinational sequent calculus.

3.4.2. Proposition If Γ is provable, then a subsequent of Γ is provable with-
out weakenings.

Proof. We inductively translate a proof P of Γ to a proof η(P) of a subsequent
of Γ ′:

If Γ is an axiom, we take η(P) = P . Otherwise, distinguish cases according
to the last rule J in P :

48 chapter 3. sequent calculus

(1) J is an exchange: Γ is of the form Λ, [i:B,A], Π. By induction hypothesis
we have a proof η(P ′) of Λ′, ∆,Π ′, where Λ′ and Π ′ are subsequents of
Λ and Π, respectively, and ∆ is either empty, [i:A], [i:B], or [i:A,B]. In
the former cases, we are done (η(P) = η(P ′)). In the latter case we get
η(P) as

.... η(P ′)

Λ′, [i:A,B], Π ′

Λ′, [i:B,A], Π ′
x:i

(2) J is a contraction: Γ is of the form Λ, [i:A,A]. By induction hypothesis we
have a proof η(P ′) of Λ′, ∆, where Λ′ is a subsequent of Λ and ∆ is either
empty, [i:A] or [i:A,A]. In the former cases, we are done (η(P) = η(P ′)).
In the latter case we get η(P) as

.... η(P ′)

Λ′, [i:A,A]

Λ′, [i:A]
c:i

(3) J is a weakening: Γ is of the form Λ, [i:A]. By induction hypothesis
we have a proof η(P ′) of Λ′, where Λ′ is a subsequent of Λ. We take
η(P) = η(P ′), which contains no weakening.

(4) J is a cut: Γ is of the form Λ1, . . . , Λk. By induction hypothesis we have
proofs η(Pj) of Λ′j , ∆

′
j , where Λ′j is a subsequent of Λj and ∆j is either

empty or [ij :A] (In the positive case, k = 2, in the negative case k = m
and ij = j). If one of the ∆j is empty, we take η(P) = η(Pj). Otherwise,
we get η(P) as

.... η(P1)

Λ′1, [i1:A] . . .

.... η(Pk)

Λ′k, [ik:A]

Λ′1, . . . , Λ
′
j

cut

(5) J is an introduction of f at place i: Π is of the form Γ, [i:F] (F is
2(A1, . . . , An) or (∀x)A(x), according to whether f is 2 or Q). By induc-
tion hypothesis we have proofs η(Pj) of Γ ′j , ∆

′′
f :i(j), where Γ ′j and ∆′′f :i(j)

are subsequents of Γj and ∆′f :i(j). If one of the ∆′′f :i(j) is empty, we take
η(P) = η(Pj). Otherwise, we get η(P) as

〈 η(Pj)

Γ ′j , ∆
′′
f :i(j)

〉
j∈I

Γ ′, F
f :i

Note that by allowing inferences on premises with subsets of the auxiliary
formulas present, we can in effect simulate the weakening rule. In the case of
Gentzen’s LK, this allowance need not be made to obtain the previous result.
This is because the rules of LK have the property that every premise contains

3.4. equivalent formulations of sequent calculi 49

only one occurrence of an auxiliary formula. By inspection of the proof of the
preceding proposition, we see that this is also sufficient (see also Kleene [1952],
§ 80). In the many-valued sequent calculus, it is in fact possible to give an
equivalent formulation with this property, but only for the propositional case.
Consider an introduction rule for 2 at place i, where ∆′2:i(j) contains more
than one formula, i.e., ∆′2:i(k) = ∆, [l:Ap]. Then we can split the rule into two
as follows:〈

Γj , ∆
′
f :i(j)

〉
j∈I\k

Γk, ∆

Γ, [i:2(A1, . . . , An)]
2:i′

〈
Γj , ∆

′
f :i(j)

〉
j∈I\k

Γk, [l:Ap]

Γ, [i:2(A1, . . . , An)]
2:i′′

It is easily seen by induction that we can obtain for any propositional rule a
set of rules with only one auxiliary formula per premise. The resulting system
is called the split-rule calculus. This system is equivalent to the combinational
sequent calculus: Every instance of a split rule can be made into an instance of
the original rule by means of a series of weakenings. On the other hand, assume
we have a deduction in the combinational calculus,

〈 Pj
Γj , ∆

′
f :i(j)

〉
j∈I

Γ, [i:2(A1, . . . , An)]
2:i

Then we can give a deduction in the split-rule calculus. It suffices to give the
case of a rule split into two, the general case is by induction:

〈 Pj
Γj , ∆

′
f :i(j)

〉
j∈I\k

〈 Pj
Γj , ∆

′
f :i(j)

〉
j∈I\k

.... Pk
Γk, ∆, [l:Ap]

Γk, [l:Ap], ∆
x

Γ, [l:Ap], [i:2(A1, . . . , An)]
2:i′

Γ, [i:2(A1, . . . , An)], [l:Ap]
x

Γ ′, [i:2(A1, . . . , An),2(A1, . . . , An)]
2:i′′

Γ, [i:2(A1, . . . , An)]
xc

Nota bene that the method of splitting rules does in general not work for quan-
tifier rules. Consider for instance the sequent [i, j:A(α)], which might be a
premise for a quantifier introduction. It expresses the condition that, for all α,
A(α) either takes the value vi or the value vj . The corresponding split sequent,
however, says that either for all α, A(α) takes the value vi or, for all α, A(α)
takes the value vj . In a word, ∀∀ does not distribute over ∨∨.

We could also define a sequent to be a tuple of sets (instead of sequences)
of formulas. We call such sequents set-sequents. If sequent calculus formulated
with set-sequents, the contraction and exchange rules become superfluous.

It should be pointed out that the study of sequent systems where combina-
tional and ordinary rules are combined while some or all structural rules are left

50 chapter 3. sequent calculus

out is a difficult and highly interesting topic. Considerations along these lines
lead to the investigation of so-called substructural logics, for instance Girard’s
Linear Logic, or Relevance Logic. For a short survey see Troelstra [1992],
§ 2.8.

3.5 The Cut-elimination Theorem for PL

The cut-elimination theorem, or Hauptsatz, was first proved for classical logic in
Gentzen [1934]. It is one of the most important theorems in proof theory. Its
underlying idea is to eliminate structure from a given proof to extract informa-
tion from it. This is an idea often used, and cut-elimination corresponds closely
to methods used in other calculi to obtain similar results: the 2nd ε-Theorem
in Hilbert and Bernays [1939] in ε-calculus, the normalization theorem of
Prawitz [1971] in natural deduction, and the normalization results for free
deduction obtained by Parigot [1992]. Important consequences of the Haupt-
satz for classical (and intuitionistic) logic include the Midsequent Theorem,
Herbrand’s Theorem, Craig’s Interpolation Theorem, and Beth’s Definability
Lemma (see Takeuti [1987], ch. 1, § 6).

The proof of the cut-elimination theorem for the family PL of many-valued
sequent calculi is analogous to the proof of the classical case given by Gentzen.
It proceeds by reducing cuts to cuts on formulas of smaller complexity and
moving the cuts in a given proof upwards until they only involve axioms; such
cuts are easily removed. The most important prerequisite for the proof is the
ability to transform a cut on a composite formula to a derivation using only cuts
acting on subformulas of the original cut-formula. In the classical case, this is
established by case distinction; we, however, have to establish this uniformly by
the lemmas below. Note how the way Takahashi [1967a] defined his sequent
calculus makes similar lemmas unnecessary for his proof of cut-elimination.

In the proof of the cut-elimination theorem, we replace the cut rule, for
technical reasons, by an equivalent rule called mix:

Π Λ

Π(i), Λ(j)
(A, i, j)

where A occurs in Πi and Λj, and Π(i) (Λ(j)) is obtained from Π (Λ) by deleting
every occurrence of A in Πi (Λj). A cut can be replaced by a mix followed by
a sequence of weakenings, and a mix can be emulated by a series of cuts. Call
the calculus obtained from PL by replacing the cut rule with the mix rule PL′.

3.5.1. Lemma Consider the derivation schema

〈Π,∆′2:i(r)〉r
Π, [i:2(A1, . . . , An)]

〈Λ,∆′2:j(s)〉s
Λ, [j:2(A1, . . . , An)]

Π,Λ
(2(A1, . . . , An), i, j)

where neither Πi nor Λj contains 2(A1, . . . , An). Then there is a proof of Π,Λ
from the sequents Π,∆′2:i(r) and Λ,∆′2:j(s) using only mixes on A1, . . . , An.

3.5. the cut-elimination theorem for pl 51

Proof. It suffices to show the lemma for Π = Γ = ∅: If we have a proof of the
empty sequent from the sequents ∆2:i(r) and ∆2:j(s), then we can immediately
obtain (using exchanges and contractions) a proof of Π,Λ by writing Π or Λ
left of every sequent in the deduction, as appropriate.

The conjunction
∧∧
r psfe(∆′2:i(r)) ∧∧

∧∧
s psfe(∆′2:j(s)) of the sfes corre-

sponding to the sequents ∆′2:i(r) and ∆′2:j(s) is clearly unsatisfiable, since∧∧
r psfe(∆′2:i(r)) is equivalent to 2(·)vi and

∧∧
s psfe(∆′2:j(s)) is equivalent to

2(·)vj , where i 6= j. We translate this conjunction to a set of clauses, which is
also unsatisfiable: Let C =

⋃
j∈I C2:i(j) be the set of clauses where

C2:i(j) = {PAvk | A ∈ ∆′2:i(j)k, 1 ≤ k ≤ m}

C is unsatisfiable, since the conjunction of the ∆’s is. By the completeness of
many-valued resolution (Theorem 2.5.8), there is a resolution deduction R of 2
from C. Note that the literals in C are all ground, and hence, in every resolution
step, there is only one literal that is resolved upon. Without loss of generality,
assume that the resolution proof is in tree form (cf. Proposition 2.5.9). Such a
proof can immediately be translated to a PL′ deduction as follows: Let

C1 ∪ {Aλvk} C2 ∪ {Aλvl}
C1 ∪ C2

be the last resolution step in R, where A is a of one of A1, . . . , An. The
corresponding mix is:

∆1, [k:A, . . . , A] ∆2, [l:A, . . . , A]

∆1, ∆2
(A, k, l)

where ∆1 and ∆2 are the sequents corresponding to C1 and C2, respectively.

3.5.2. Lemma Consider the derivation schema

〈Π,∆2:i(r)〉r
Π, i: (Qx)A(x)

〈Λ,∆Q:j(s)〉s
Λ, j: (Qx)A(x)

Π,Λ
((Qx)A(x), i, j)

where neither Πi nor Λj contains (Qx)A(x), and the appropriate eigenvari-
able conditions are satisfied. Then there is a proof of Π,Λ from the sequents
Π,∆Q:i(l) and Λ,∆Q:j(k) using only mixes on instances Aσ of formulas A oc-
curring in the ∆’s, where dom(σ) contains only eigenvariables.

Proof. Again, it suffices to show the lemma for Π = Γ = ∅. The conjunction∧∧
r psfe(∆′Q:i(r)) ∧∧

∧∧
s psfe(∆′Q:j(s)) of the sfes corresponding to the sequents

∆Q:i(r) and ∆Q:j(s) is universally unsatisfiable (where universal satisfiability
for sfes is defined analogous to Definition 2.2.2. We translate this conjunction
to a set of clauses, which is also universally unsatisfiable: Let C =

⋃
j∈I CQ:i(j)

be the set of clauses where

CQ:i(j) = {PA(cτ)vk | A(τ) ∈ ∆′Q:i(j)k, 1 ≤ k ≤ m} ∪
∪{PA(aτ)vk | A(α) ∈ ∆′Q:i(j)k, 1 ≤ k ≤ m}

52 chapter 3. sequent calculus

where the aα are distinct free variables and the cτ are distinct constant symbols.
By the completeness of many-valued resolution (Theorem 2.5.8), there is a
resolution deduction R of 2 from C, which is (w.l.o.g.) in tree form. We
recursively translate Rρ(R) (ρ the cumulative substitution of Definition 2.5.10)
into a PL′-derivation as follows: Let

.... R1

C1

.... R2

C2

(C1 \ {A})} ∪ (C2 \ {A}}

be the last resolution step in Rρ(R), where 〈{A}, {A}, at({A})〉 is a key triple
(with mgu id), A contains an atom of the form PA(a) or PA(c) (a is a variable
and c a constant symbol). Recall that the cumulative substitution has been
applied to R, so resolution steps actually do take this special, ground-like,
form.

Let P1 (P2) be the result of the recursive translation of R1 (R2). The
corresponding deduction in PL′ is:

.... P1

∆
(k)
1 , [k:A]

.... P2

∆
(l)
2 , [l:A]

∆1, ∆2
(A, r, s)

where ∆1 and ∆2 are the sequents corresponding to C1 and C2, respectively
(where free variables are replaced by eigenvariables and constants by term vari-
ables). The corresponding σ is easily obtained from ρ(R).

Note that here, too, we can add Π and Λ to the sequents without chang-
ing the term structure of formulas other than the ones in the ∆’s, since only
eigenvariables (which must not occur in Π or Λ) are substituted into.

It is clear that σ will in general substitute into eigenvariables. This cor-
responds to the case in the cut-elimination theorem for LK where a cut on
(∀x)A(x) is reduced to a cut on A(t). The eigenvariable above the strong
premise of the cut is replaced throughout the whole proof with the term occur-
ring in the premise of the weak ∀-introduction above the right premise of the
cut.

We are now ready to state and prove the Hauptsatz for PL:

3.5.3. Theorem A PL-proof with end sequent Λ can be transformed into a
cut-free PL-proof of Λ.

Proof. It suffices to show that mixes can be eliminated from PL′-proofs. If
every PL′-proof with only one mix as its last inference can be transformed to a
PL′-proof without a mix, then the mixes can be eliminated from all PL′-proofs.
This is seen by induction on the number c of mixes in the proof: For c = 1
this is the hypothesis. If c > 1, then consider a mix s.t. the subproof ending
in the mix contains only this mix as its last inference. By hypothesis, this mix
can be eliminated, and the subproof replaced by a mix-free proof of the same
endsequent. The resulting proof has c− 1 mixes, and the induction hypothesis
applies. Hence, it suffices to show the following:

3.5. the cut-elimination theorem for pl 53

3.5.4. Lemma Let P be a PL′-proof containing only one mix (A, i, j) as its last
inference. Then P can be transformed to a mix-free PL′-proof P ′ of the same
end-sequent.

Let P be a PL′-proof containing only one mix (A, i, j) which occurs as the
last inference in P . The degree of P , denoted d(P), is the complexity deg(A)
of the mix formula A.

We call a thread in P containing the left (right) upper sequent of the mix a
left (right) thread. The rank of a left (right) thread is the number of consecutive
sequents counting upwards from the left (right) upper sequent of the mix which
contain the mix formula at place i (j). The left (right) rank of P , denoted rl(P)
(rr(P)) is the maximum of the ranks of its left (right) threads. The rank of P ,
denoted r(P), is the sum of its left and right rank: r(P) = rl(P) + rr(P).

The proof is by double induction on the rank and degree of P :

(1) r = 2, i.e., left and right rank of P equal 1. We distinguish cases according
to the type of the inferences above the mix:

(a) Π is an axiom [V :A]: P is of the form

[V :A]

.... P1

Λ

[V \ vi:A], Λ(j)
(A, i, j)

We can derive Π(i), Λ(j) without a mix as follows:

.... P1

Λ

[j:A, . . . , A], Λ(j)
x

[j:A], Λ(j)
c

[V \ vi:A], Λ(j)
w

(b) Λ is an axiom. Similarly.

(c) Π is the conclusion of a structural inference. Since the left rank is 1,
this inference must be a weakening at place i:

.... P1

Π(i)

Π(i), [i:A]
w: i

.... P2

Λ

Π(i), Λ(j)
(A, i, j)

where Π is Π ′, [i:A]. We obtain Π(i), Λ(j) without a mix as follows:

.... P1

Π(i)

Π(i), Λ(j)
w

54 chapter 3. sequent calculus

(d) Λ is the conclusion of a structural inference. Similarly.

(e) Both Π and Λ are conclusions of introduction rules 2:i and 2:j for
the connective 2:

〈Π,∆2:i(r)〉r
Π, i:2(· · ·)

〈Λ,∆2:j(s)〉s
Λ, j:2(· · ·)

Π,Λ
(2(· · ·), i, j)

By Lemma 3.5.1, there is a derivation of Π,Λ from Π,∆2:i(r) and
Λ,∆2:j(s), using only mixes, exchanges, and contractions. Since
the formulas in the ∆’s are subformulas of 2(· · ·), the degrees of
all the resulting mixes are less than the degree of the original mix.
We iteratively apply the induction hypothesis to the new mixes and
obtain a derivation without mixes of Π,Λ.

(f) Both Π and Λ are conclusions of introduction rules Q:i and Q:j for
the quantifier Q:

〈Π,∆Q:i(r)〉r
Π, i: (Qx)A(x)

〈Λ,∆Q:j(s)〉s
Λ, j: (Qx)A(x)

Π,Λ
((Qx)A(x), i, j)

By Lemma 3.5.2, there is a derivation of Π,Λ from Π,∆Q:i(r)σ and
Λ,∆Q:j(s)σ, using only mixes, exchanges, and contractions, where
σ only substitutes into eigenvariables of the two quantifier introduc-
tions. Since the formulas in the ∆’s are subformulas of (Qx)A(x),
the degrees of all the resulting mixes are less than the degree of the
original mix. We iteratively apply the induction hypothesis to the
new mixes and obtain a derivation without mixes of Π,Λ.

(2) rr(P) > 1: Again, we distinguish cases:

(a) Λi contains A: We obtain the following mix-free proof:

.... P1

Π

Π(i), [i:A, . . . , A]
e

Π(i), [i:A]
c

Π(i), Λ(j)
w

(b) Πj contains A: We obtain the following mix-free proof:

.... P2

Λ

Λ(j), [j:A, . . . , A]
e

Λ(j), [j:A]
c

Π(i), Λ(j)
w

3.5. the cut-elimination theorem for pl 55

(c) Λ is the consequence of an inference J2, which is either structural
(but not cut), or a logical inference not introducing A at place j.
P is of the form

.... P1

Π

.... P (1)

Ψ(1) . . .

.... P (p)

Ψ(p)

Λ
J2

Π(i), Λ(j)
(A, i, j)

Let j1, . . . , js, 1 ≤ jk ≤ p, be all indices s.t. Ψ(jk) contains A (There
is at least one such jk, otherwise the right rank of P would equal 1).
Consider the proofs P (jk)

′:

....
Π

....
Ψ(jk)

Π(i), Ψ(jk)
(j)

(A, i, j)

In P (jk)
′, rl(P (jk)

′) = rl(P) and rr(P (jk)
′) ≤ rr(P)−1, and in sum

r(P (jk)
′) ≤ r(P) − 1. Hence the induction hypothesis applies and

we have mix-free proofs P (jk)
′′ of Π(i), Ψ(jk)

(j). For indices l not
occurring in the above list, we have that Ψ(l) equals Ψ(l)(j), and we
define P (l)′′ as

.... P (l)

Ψ(l)

Π(i), Ψ(l)
w

If J2 is a (w:j) (and consequently, p = 1 and Ψ(1)(j) = Λ(j)), then
P (1)′′ serves as our transformed proof. Otherwise, construct a proof
as follows: P (1)′′

Π(i), Ψ(1)(j) . . .

.... P (p)′′

Π(i), Ψ(p)(j)

Π(i), Λ(j)
J2

Π(i), Λ(j)
x

(d) Λ is the consequence of a logical inference J2 introducing A at place j.
P is of the form

.... P1

Π

.... P (1)

Λ,∆(1) . . .

.... P (p)

Λ,∆(p)

Λ, [j:A]
J2

Π(i), Λ(j)
(A, i, j)

Consider the proofs P (k)′ (Note that ∆(k) does not contain A—only
proper subformulas of A—and hence ∆(k)(j) equals ∆(k)):

.... P1

Π

.... P (k)

Λ,∆(k)

Π(i), Λ(j), ∆(k)
(A, i, j)

56 chapter 3. sequent calculus

In P (k), rl(P (k)′) = rl(P), rr(P (k)′) ≤ rr(P) − 1 and in sum
r(P (k)′) ≤ r(P)−1. Hence, the induction hypothesis applies and we
obtain mix-free proofs P (k)′′ of Π(i), Λ(j), ∆(k). Construct a proof
P ′ as follows:

.... P1

Π

.... P (1)′′

Π(i), Λ(j), ∆(1) . . .

.... P (p)′′

Π(i), Λ(j), ∆(p)

Π(i), Λ(j), [j:A]
J2

Π(i), Π(i), Λ(j)
(A, i, j)

Note that A does not occur at place j in Π(i), since otherwise case
(2)(b) would have applied, hence rr(P

′) = 1. With rl(P
′) = rl(P)

we have that r(P ′) < r(P) and the induction hypothesis yields a
mix-free proof P ′′ of Π(i), Π(i), Λ(j). We obtain a mix-free proof:

.... P
′

Π(i), Π(i), Λ(j)

Π(i), Λ(j)
xc

(3) rr(P) = 1 and rl(P) > 1: This case is dealt with in the same way as (2)
above, mutatis mutandis.

This completes the proof of the cut-elimination theorem.

3.6 The Cut-elimination Theorem for NL

The cut elimination theorem also holds for the negative sequent calculus.
Carnielli [1991] gives a proof of cut-elimination for his (n-)sequent calculus
via tableaux.

The induction proof itself is again very similar to the proof for the positive
case. As above, we first have to ensure that cuts on composite formulas are
decomposable. The mix in the negative sequent calculus takes the form

Π1 . . . Πm

Π
(1)
1 , . . . ,Π

(m)
m

(A)

where A occurs in Πii (1 ≤ i ≤ m), and Π
(i)
i is obtained from Πi by deleting

every occurrence of A in Πii. Call the calculus obtained from NL by replacing
the cut rule with the mix rule NL′.

3.6.1. Lemma Consider the derivation schema

〈Π1, ∆2:1(r1)〉r1
Π1, [1:2(A1, . . . , An)] . . .

〈Πm, ∆2:m(rm)〉rm
Πm, [m:2(A1, . . . , An)]

Π1, . . . ,Πm
(2(A1, . . . , An))

where Πii does not contain 2(A1, . . . , An). Then there is a proof of Π1, . . . ,Πm

from the sequents Πi, ∆2:i(ri) using only mixes on A1, . . . , An.

3.6. the cut-elimination theorem for nl 57

Proof. Completely analogous to the positive case, using negative resolution
deductions.

3.6.2. Lemma Consider the derivation schema

〈Π1, ∆Q:1(r1)〉r1
Π1, [1: (Qx)A(x)] . . .

〈Πm, ∆Q:m(rm)〉rm
Πm, [m: (Qx)A(x)]

Π1, . . . ,Πm
((Qx)A(x))

where Πii does not contain (Qx)A(x), and the appropriate eigenvariable con-
ditions are satisfied. Then there is a proof of Π1, . . . ,Πm from the se-
quents Πi, ∆Q:i(ri) using only mixes on instances Aσ of formulas A occurring
in the ∆’s, where dom(σ) contains only eigenvariables.

Proof. Completely analogous to the positive case, using negative resolution
deductions.

3.6.3. Theorem A NL-proof with end sequent Λ can be transformed into a
cut-free NL-proof of Λ.

Proof. It suffices to show the following:
Let P be a NL′-proof containing only one mixA as its last inference. Then P

can be transformed to a mix-free NL′-proof P ′ of the same end-sequent.
Let P be a NL′-proof containing only one mix A which occurs as the last

inference in P . The degree of P , denoted d(P), is the complexity of the mix
formula A.

We call a thread in P containing the i-th upper sequent of the mix an i-
th thread. The rank of an i-th thread is the number of consecutive sequents
counting upwards from the i-th upper sequent of the mix which contain the mix
formula at place i. The i-th rank of P , denoted ri(P) is the maximum of the
ranks of its i-th threads. The rank of P , denoted r(P), is the sum of its i-th
ranks rank: r(P) =

∑m
i=1 ri(P).

The proof is by double induction on the rank and degree of P :

(1) r = m, i.e., all i-th ranks of P equal 1. We distinguish cases according to
the type of the inferences above the mix:

(a) Πi is an axiom [i, j:A]: P is of the form
.... P1

Π1 . . . [i, j:A]

.... Pm
Πm

Π
(1)
1 , . . . , [j:A], . . . ,Π

(m)
m

(A)

We can derive the conclusion without a mix as follows:
.... Pj
Πj

[j:A, . . . , A], Π
(j)
j

x

[j:A], Π
(j)
j

c

Π
(1)
1 , . . . , [j:A], . . . ,Π

(m)
m

wx

58 chapter 3. sequent calculus

(b) Πi is the conclusion of a structural inference. Since the i-th rank
is 1, this inference must be a weakening at place i:

.... P1

Π1 . . .

.... Pi

Π
(i)
i

Π
(i)
i , [i:A]

w: i
. . .

.... Pm
Πm

Π
(1)
1 , . . . ,Π

(i)
i , . . . ,Π

(m)
m

(A)

where Πi is Π
(i)
i , [i:A]. We obtain the conclusion without a mix as

follows:
.... Pi

Π
(i)
i

Π
(1)
1 , . . . ,Π

(i)
i , . . . ,Π

(m)
m

wx

(c) All the Πi are conclusions of introduction rules 2:i for the connec-
tive 2:

〈Π1, ∆2:1(r1)〉r1
Π1, [1:2(· · ·)] . . .

〈Πm, ∆2:m(rm)〉rm
Πm, [m:2(· · ·)]

Π1, . . . ,Πm
(2(· · ·))

By Lemma 3.6.1, there is a derivation of Π1, . . . ,Πm from
Πi, ∆2:i(ri) (1 ≤ i ≤ m), using only mixes, exchanges, and con-
tractions. Since the formulas in the ∆’s are subformulas of 2(· · ·),
the degrees of all the resulting mixes are less than the degree of the
original mix. We iteratively apply the induction hypothesis to the
new mixes and obtain a derivation without mixes of Π1, . . . ,Πm

(d) All the Πi are conclusions of introduction rules Q:i for the quanti-
fier Q:

〈Π1, ∆Q:1(r1)〉r1
Π1, [1: (Qx)A(x)] . . .

〈Πm, ∆Q:m(rm)〉rm
Πm, [m: (Qx)A(x)]

Π1, . . . ,Πm
((Qx)A(x))

By Lemma 3.6.2, there is a derivation of Π1, . . . ,Πm from
Πi, ∆Q:i(ri)σ (1 ≤ i ≤ m), using only mixes, exchanges, and con-
tractions, where σ only substitutes into eigenvariables of the two
quantifier introductions. Since the formulas in the ∆’s are subfor-
mulas of (Qx)A(x), the degrees of all the resulting mixes are less
than the degree of the original mix. We iteratively apply the induc-
tion hypothesis to the new mixes and obtain a derivation without
mixes of Π1, . . . ,Πm.

(2) ri(P) > 1 and rj(P) = 1 for all j < i: Again, we distinguish cases:

3.6. the cut-elimination theorem for nl 59

(a) Πkl (k 6= l) contains A: We obtain the following mix-free proof:

.... Pl
Πl

Π
(l)
l , [l:A, . . . , A]

e

Π
(l)
l , [l:A]

c

Π
(1)
1 , . . . ,Π

(m)
m

wx

(b) Πi is the consequence of an inference J2, which is either structural,
or a logical inference not introducing A at place i. P is of the form

.... P1

Π1 . . .

.... P (1)

Ψ(1) . . .

.... P (p)

Ψ(p)

Πi
J2 . . .

.... Pm
Πm

Π
(1)
1 , . . . ,Π

(m)
m

A

Let j1, . . . , js, 1 ≤ jk ≤ p, be all indices s.t. Ψ(jk) contains A (There
is at least one such jk, otherwise the i-th rank of P would equal 1).
Consider the proofs P (jk)

′:

....
Π1 . . .

....
Ψ(jk) . . .

....
Πm

Π
(1)
1 , . . . , Ψ(jk)

(i), . . . ,Π
(m)
m

A

In P (jk)
′, rj(P (jk)

′) = rj(P) (j 6= i) and ri(P (jk)
′) ≤ ri(P)−1, and

in sum r(P (jk)
′) ≤ r(P)−1. Hence the induction hypothesis applies

and we have mix-free proofs P (jk)
′′ of Π

(1)
1 , . . . , Ψ(jk)

(i), . . . ,Π
(m)
m .

For indices l not occurring in the above list, we have that Ψ(l) equals
Ψ(l)(i), and we define P (l)′′ as

.... P (l)

Ψ(l)

Π
(1)
1 , . . . , Ψ(l), . . . ,Π

(m)
m

w

If J2 is a (w:i) (and consequently, p = 1 and Ψ(1)(i) = Π
(i)
i), then

P (1)′′ serves as our transformed proof. Otherwise, construct a proof
as follows:

.... P (1)′′

Π
(1)
1 , . . . , Ψ(1)(i), . . . ,Π

(m)
m

Π
(1)
1 , . . . ,Π

(m)
m , Ψ(1)(i)

x
. . .

.... P (p)′′

Π
(1)
1 , . . . , Ψ(p)(i), . . . ,Π

(m)
m

Π
(1)
1 , . . . ,Π

(m)
m , Ψ(p)(i)

x

Π
(1)
1 , . . . ,Π

(m)
m , Π

(i)
i

J2

Π
(1)
1 , . . . ,Π

(m)
m

x

60 chapter 3. sequent calculus

(c) Πi is the consequence of a logical inference J2 introducing A at
place i. P is of the form

.... P1

Π1 . . .

.... P (1)

Πi, ∆(1) . . .

.... P (p)

Πi, ∆(p)

Πi, [i:A]
J2

. . .

.... Pm
Πm

Π
(1)
1 , . . . ,Π

(m)
m

(A)

Consider the proofs P (k)′ (Note that ∆(k) does not contain A—only
proper subformulas of A—and hence ∆(k)(i) equals ∆(k)):

.... P1

Π1 . . .

.... P (k)

Πi, ∆(k) . . .

.... Pm
Πm

Π
(1)
1 , . . . ,Π

(i)
i , ∆(k), . . . ,Π

(m)
m

(A)

In P (k), rj(P (k)′) = rj(P) (j 6= i), ri(P (k)′) ≤ ri(P)−1 and in sum
r(P (k)′) ≤ r(P) − 1. Hence, the induction hypothesis applies and

we obtain mix-free proofs P (k)′′ of Π
(1)
1 , . . . ,Π

(i)
i , ∆(k), . . . ,Π

(m)
m .

Construct a proof P ′ as follows:

.... P1

Π1 . . .

.... P (1)′′

Π
(1)
1 , . . . ,Π

(i)
i , ∆(1), . . . ,Π

(m)
m

Π
(1)
1 , . . . ,Π

(m)
m , ∆(1) . . .

.... P (p)′′

Π
(1)
1 , . . . ,Π

(i)
i , ∆(p), . . . ,Π

(m)
m

Π
(1)
1 , . . . ,Π

(m)
m , ∆(p)

Π
(1)
1 , . . . ,Π

(m)
m , [i:A]

J2
. . .

.... Pm

Πm

Π
(1)
1 , . . . ,Π

(i−1)
i−1 , Π

(1)
1 , . . . ,Π

(m)
m , Π

(i+1)
i+1 , . . . Π

(m)
m

(A)

Note that A does not occur at place i in Π
(j)
j (j 6= i), since otherwise

case (2) would have applied, hence ri(P
′) = 1. With rj(P

′) = rj(P)
(j 6= i) we have that r(P ′) < r(P) and the induction hypothesis
yields a mix-free proof P ′′, whence we have:

.... P
′′

Π
(1)
1 , . . . ,Π

(i−1)
i−1 , Π

(1)
1 , . . . ,Π

(m)
m , Π

(i+1)
i+1 , . . . Π

(m)
m

Π
(1)
1 , . . . ,Π

(m)
m

xc

This completes the proof of the cut-elimination theorem.

3.7 Analytical Properties of PL

The cut-elimination theorem is often invoked to show certain simple proper-
ties of sequent calculus, such as the subformula property, the decidability of
propositional logic, or consistency. In fact, these properties do not depend on

3.7. analytical properties of pl 61

the cut-elimination theorem itself, i.e., on the availability of an algorithm for
eliminating cuts from a given proof, but on the completeness of the cut-free
fragment. However, we may want to extract information from cut-free proofs.
The cut-elimination algorithm makes the constructive extraction of such infor-
mation possible, given an arbitrary proof (containing cuts).

The following subformula property says that a proof of a statement (i.e., a
sequent) need only consist of subformulas of the formulas in the given sequent.
This makes the notion precise that a sequent can be proved without “detours,”or
having to use information unrelated to the end sequent.

3.7.1. Proposition (Subformula Property) A cut-free PL-proof contains only
formulas which are subformulas of the end-sequent.

Proof. By induction on the length of proofs: All rules except the cut rule
have the property that every formula occurring in the premises also occurs in
the conclusion.

The midsequent theorem is what Gentzen called his Verschärfter Hauptsatz,
meaning a strengthening of the cut-elimination theorem. It shows the existence
of proofs which are not only cut-free, but also have all quantifier inferences
below all propositional inferences.

3.7.2. Theorem (Midsequent Theorem) Let Π be a sequent consisting only of
prenex formulas which is provable in PL. Then there is a cut-free proof of Π
containing sequents Σ1, . . . , Σp, s.t.

(1) Σj is quantifier-free,

(2) every inference above Σj is either structural or propositional, and

(3) every inference below Σj is either structural or a quantifier inference.

Proof. By the cut-elimination theorem and Corollary 3.3.11, there is a cut-
free proof P of Π from atomic axiom sequents. The order of a quantifier
introduction J in P is defined as the number of propositional inferences below J .
The order o(P) of P is the sum of the orders of all quantifier inferences occurring
in P .

We prove the theorem by induction on the order of P :

(1) o(P) = 0: There is no propositional inference occurring below any quan-
tifier inferences. Let B be a branch in P . If there is a propositional
inference on B, then let ΣB be the conclusion of the lowermost such,
otherwise let ΣB be the (atomic) axiom sequent on B. If ΣB contains
a quantified formula F , then F has to be introduced by weakenings. To
see this, recall that Π contains only prenex formulas: By the subformula
property, ΣB is a subformula of a formula in Π, hence no propositional
inferences apply to it. Eliminate F and all inferences applying to it from
the part of B above ΣB, and add appropriate weakenings and exchanges
directly below ΣB. The (finite) set of all ΣB serves as the set of Σi in the
statement of the theorem.

62 chapter 3. sequent calculus

(2) o(P) > 0: Then there is a quantifier inference I with the following prop-
erty: The topmost logical inference below I is a propositional inference,
say J . The part of P between I and J takes the following form:

....
Γ1 . . .

〈
Γ ′, ∆Q:i(k)

〉
k

Γ ′, [i: (Qx)A(x)]
I

.... ∗
Γ ′′ . . .

....
Γn

Γ
J

where the part denoted by ∗ contains only structural inferences, and Γ
and Γ ′′ contains (Qx)A(x) as a sequent-formula. We can now lower the
order by exchanging the positions of I and J :

/
∖

....
Γ1

∆Q:i(k), Γ1 . . .

....
Γ ′, ∆Q:i(k)

Γ ′, ∆Q:i(k), [i: (Qx)A(x)]
w

∆Q:i(k), Γ ′, [i: (Qx)A(x)]
e

.... ∗
∆Q:i(k), Γ ′′ . . .

....
Γn

∆Q:i(k), Γn
∆,Γ

J

Γ,∆Q:i(k)
e

∖
/

k

Γ, [i: (Qx)A(x)]
I

Γ
ec

In classical logic, the quantifier rules all have only one premise each. From
this it follows that there always is one midsequent. This midsequent contains,
in essence, an Herbrand disjunction of the prenex formula in the end-sequent.
If the many-valued logic under consideration has a similar structure, i.e., the
quantifiers considered have only one premise, then an analogue of Herbrand’s
Theorem holds for this logic.

3.8 Interpolation

Interpolation is an interesting problem for logics with something resembling an
implication connective. The question asked is, for two given formulas A and
B where A ⊃ B, is there a formula C, called an interpolant of A and B, s.t.
(1) A ⊃ C and C ⊃ B, (2) C contains only predicate symbols common to A and
B and (3) C contains only free variables common to A and B. For classical logic,
the interpolation theorem was first proved by Craig [1957]. Maehara [1960]
showed the interpolation theorem in a proof theoretical fashion by making use
of what has become known as Maehara’s Lemma (see also Takeuti [1987],
p. 31ff). It also enabled Schütte [1962] to extend the theorem to intuitionistic

3.8. interpolation 63

predicate logic. Maehara’s Lemma states that, if a sequent Γ1, Γ2 → ∆1, ∆2 is
provable, then there is an interpolant such that Γ1,→ ∆1, C and C, Γ2 → ∆2

are provable and the analogues of (2) and (3) hold. We prove a version of
Maehara’s Lemma in the framework of the p-sequent calculus for many-valued
logic. This was first done by Miyama [1974] and more recently in a slightly
more general form by Hanazawa and Takano [1985] for the formalism of
Takahashi [1967a]. Gill [1970] was the first to consider interpolation in three-
valued logic.

The interpolation theorem for classical logic follows immediately from Mae-
hara’s Lemma since the sequent arrow and the implication are equivalent in the
sense that A ⊃ B is valid iff A→ B is. The theorem is obtained from the lemma
simply by taking Γ1 = A, ∆2 = B, and Γ2 = ∆1 = ∅. In the many-valued case
of course, no such correspondence holds in general. In fact, Maehara’s Lemma
is true in any many-valued logic, while the interpolation theorem need not hold.
For instance, none of the Lukasiewicz logics (other than two-valued) interpolate,
as has been shown by Krzystek and Zachorowski [1977].

Assume the logic under consideration contains the following truth functions
(either as primitive connectives or representable):

(1) For every truth value v the constant truth function C̃v

(2) Every unary truth function G̃Uv,w, where G̃Uv,w(v) = v if v ∈ V \ U and
= w otherwise. (Note that these are all unary truth function taking only
two truth values.)

(3) Every n-ary truth function H̃n
u,w, where H̃n

v,w(v1, . . . , vn) = w if v1 = . . . =
vn = w and = v otherwise.

(4) Every quantifier K̃v,w, where K̃v,w(V) = v if V = {v} and = w otherwise.

We denote by Ci, G
U
v,w, Hn

v,w and Kv,w the corresponding formula schemata,
respectively.

3.8.1. Theorem (Maehara’s Lemma) Let Γ,Λ be a p-provable (and hence p-
valid) sequent where Γ ∩ Λ = ∅. Then there is, for every pair v 6= w of
truth values, a formula C, called an interpolant of Γ and Λ, with the following
properties:

(1) Γ, [v:C] and Λ, [w:C] are both provable.

(2) Every predicate symbol of C occurs in both Γ and Λ.

(3) Every free variable of C occurs in both Γ and Λ.

Proof. The proof is by induction on the height h of the proof of Γ,Λ:
h = 0: Γ,Λ is an axiom. We distinguish cases:

(1) Γ = ∅: Take for C the constant formula Cv. Since [u:Cu] is p-valid,
Γ, [v:Cv] is provable. Λ is provable by hypothesis, hence Λ, [w:Cv] is
provable by weakening.

64 chapter 3. sequent calculus

(2) Λ = ∅: Similarly, with C = Cw.

(3) Γ = [U :A] and Λ = [V \ U :A]: Take for C the formula GUv,w(A). Let I be

some interpretation. By the definition of G̃Uv,w, C takes the value w if A
takes a value from U , and takes v otherwise. So when I p-satisfies Γ , i.e.,
does not p-satisfy Λ, then C takes the value w. Conversely, if Γ is not p-
satisfied by I, then C takes the value v. From this it follows that Γ, [v:C]
and Λ, [w:C] are both p-valid (and hence provable by completeness).

h > 0: Γ,Λ is the conclusion of a rule of inference J . We distinguish cases
according to this last rule in the proof:

(1) J is a weakening at place i: Assume the weakening formula A belongs
to Γ (the other case is symmetric). J is of the form:

Γ ′, Λ

Γ ′, [i:A], Λ
w

By induction hypothesis, there is an interpolant C of Γ ′ and Λ. C is also
an interpolant of Γ and Λ, since Γ, [v:C] is provable from Γ ′, [v:C] by
weakening, and C contains no predicate symbols or free variables of A
which do not occur in Λ.

(2) J is a introduction rule for 2 at place i: Assume the introduced formula
2(A1, . . . , An) belongs to Γ (the other case is symmetric). The proof ends
in

Γ ′, ∆2:i(1), Λ . . . Γ ′, ∆2:i(p), Λ

Γ ′, [i:2(A1, . . . , An)], Λ
2:i

The induction hypothesis yields interpolants Cj of Γ ′, ∆2:i(j) and Λ (j =
1, . . . , p). Let C equal Hp

v,w(C1, . . . , Cp). C is an interpolant of Γ and Λ:
First, it contains no predicate symbols or free variables not common to
Γ and Λ. Furthermore, Γ, [v:C] and Λ, [w:C] are both p-valid. Let I be an
interpretation. I p-satisfies all of Γ ′, ∆2:i(j), [v:Cj] (j = 1, . . . , p). This is
the case if either (a) I p-satisfies Γ ′, (b) I p-satisfies all of ∆2:i(j), or (c) I
p-satisfies at least one [v:Cj]. In case (a), Γ ′, [i:2(A1, . . . , An)], [u:C] is
p-satisfied, since Γ ′ is p-satisfied. In case (b), we know that 2(A1, . . . , An)
takes the value vi by the definition of partial normal forms. In case (c),
C takes the value v, since not all of the arguments to Hp

v,w equal w. In
any case, then, we have that I p-satisfies Γ, [v:C]. On the other hand,
if I does not p-satisfy Λ, it p-satisfies all of [w:Cj] (j = 1, . . . , p), since
Λ, [w:Cj] are all p-valid. But then all the arguments to Hp

v,w in C equal
w, hence C takes the value w. Hence, Λ, [w:C] is also p-valid.

(3) J is an introduction rule for Q at place i: We will again only treat the
case where the introduced formula [i: (Qx)A(x)] belongs to Γ . J takes
the form

Γ ′, ∆Q:i(1), Λ . . . Γ ′, ∆Q:i(p), Λ

Γ ′, [i: (Qx)A(x)], Λ
Q:i

3.8. interpolation 65

There are interpolants Cj for the premises Γ ′, ∆Q:i(j) and Λ (j = 1, . . . ,
p), by induction hypothesis. As in the last case, D = Hp

v,w(C1, . . . , Cp)
is such that Γ, [v:D] and Λ, [w:D] are p-valid. Note that the Cj and
hence D do not contain eigenvariables of the inference J . To see this,
recall that Cj contains only free variables common to Γ ′, ∆Q:i(J) and Λ.
But eigenvariables cannot have this property, since they must not appear
in Λ.

However, since the Cj are interpolants of the premises, they may contain
free variables which occur only in terms being replaced by the bound
variable x and do not occur in Γ ′. These variables occur only in Λ and no
longer in Γ ′, [vi: (Qx)A(x)]. The truth or falsity of Γ, [v:D] can obviously
not depend on the assignment of such a variable in a given interpretation.
We can then bind all these variables by the quantifier K.

To be more precise, let a1, . . . , aq be all free variables occurring in D
which do not occur in Γ . Let I be an interpretation. If Γ, [v:D] is p-
satisfied by I′, then every interpretation I′ ∼a1,...,aq I p-satisfies Γ, [v:D]
as well. In particular, this holds for every I′′ ∼a1 I. But this means that
DistrI(D(x, a2, . . . , aq)) = {u} where u = valI(D(a1, . . . , aq)). Hence, if I
p-satisfies [v:D] (i.e., u = v), then also I |=p [v: (Kx)D(x, a2, . . . , aq)]. By
induction, this holds also for C = (Kx1) . . . (Kxq)D(x1, . . . , xq). In other
words, Γ, [v:C] is p-valid.

On the other hand, the truth of Λ, [w:D(a1, . . . , aq)] may depend on the
assignment of a1, . . . , aq, since they occur in Λ. But if there is an inter-
pretation I′ ∼a1 I s.t. I |=p Λ and I′ 6|=p Λ but I′ |=p [w:D(a1, . . . , aq)]
this means that DistrI(D(x, a2, . . . , aq)) 6= {v}. By the definition of K
it holds that valI((Kx)D(x, a2, . . . , aq)) = w. By induction we have that
any given interpretation I either p-satisfies Λ or [w:C], i.e., Λ, [w:C] is
p-valid.

In contrast to the proofs of Maehara [1960] and Miyama [1974], the above
proof is not entirely proof theoretical in that the p-validity of certain sequents
was shown by semantical considerations. This makes it necessary to invoke the
completeness theorem. However, this is only due to the fact that the formu-
las/functions Cv, G

U
v,w, Hn

v,w and Kv,w are, to a certain extent, left unspecified.
One could, for instance, require that they be given as primitive connectives
and quantifiers in the logic, and fix certain introduction rules for them. If
this is done, it seems probable that the demonstrations of p-validity of certain
sequents in the proof can be replaced by giving derivation schemata of these
sequents. For instance, it should be possible to give a uniform way of deriving
Γ ′, [vi:2(A1, . . . , An)], [v:C] from Γ ′, ∆2:i(j), [v:Cj], like in the proofs of Mae-
hara and Miyama. This has the advantage of not only giving a constructive
method of obtaining the interpolant (this is also accomplished by our proof),
but also of obtaining proofs of Γ, [v:C] and Λ, [w:C].

Deeper investigations are also needed for exploring the connections between
Maehara’s Lemma and interpolation as a property of implication. For instance,
what does an implication function have to look like so that Maehara’s Lemma

66 chapter 3. sequent calculus

implies the interpolation property? Can one find simpler, or more natural,
families of functions so that Maehara’s Lemma can be proved?

Chapter 4

Natural Deduction

4.1 Introduction

Gentzen [1934] formulated natural deduction for intuitionistic logic as the
system NJ. In correspondence with the intuitionistic sequent calculus LJ, where
the right side of a sequent is restricted to at most one formula, NJ deals with
inference patterns (“Schlußweisen”) of one conclusion from a set of assumptions.
At the application of rules, assumptions of a certain form can be discharged in
parts of the proof. A proof of a formula is a deduction tree where all assumptions
have been discharged.

In NJ, the symbol “⊥” is used to denote falsehood, or equivalently, an
empty conclusion. Gentzen gives introduction and elimination rules for the
connectives and quantifiers, as well as the weakening rule for NJ:

⊥
A

Natural deduction for classical logic NK is then obtained by adding tertium
non datur to NJ. Alternatively, one can drop the restriction to one formula in
the conclusion and allow sets of formulas. For a discussion of the resulting sys-
tems see for instance Ungar [1992], Chapters 4 and 5, or Girard [1987], § 2.
Parigot [1992] has given computational meaning to the multi-conclusion nat-
ural deduction calculus for classical logic by normalization and Curry-Howard
isomorphism (see also his [1993]).

A general construction of sound and complete natural deduction calculi
leads to an adequate syntactical (proof-theoretic) characterization of many-
valued logics for which one wants to emphasize the rôle of a particular (set of)
truth value(s). We generalize the classical multi-conclusion system of natural
deduction to the m-valued case. This is done in essence by splitting the many-
valued (positive) sequent into the part corresponding to the designated truth
values and the part corresponding to the non-designated ones. The former
then corresponds to facts derived, the latter to facts assumed. We give, in a
systematic way, introduction rules for every connective or quantifier for every
designated position, and elimination rules for every non-designated position.
This system, with the set of designated truth values restricted to {vm}, has
been presented in Baaz et al. [1993b].

67

68 chapter 4. natural deduction

In contrast to the many different (more or less equivalent) approaches in
the literature to sequent calculi and tableaux calculi, natural deduction has
not been treated in this fashion before (to the best of the author’s knowledge).
For the three-valued logic of Lukasiwewicz, however, natural deduction systems
have been developed, e.g., the calculus of White [1980]. The approach of Bec-
chio and Pabion [1977] is very similar to the one used here. In fact, in the
same paper they first consider three-part sequents to formalize L3. This is their
starting point for a natural deduction system, which uses the operator M to in-
dicate that a formula takes the intermediate truth value. Still, their formulation
is closer to the original NJ.

Natural deduction is concerned with validity, or with valid patterns of in-
ference. Hence, we make use of the theory of positive sequent calculi only. This
seems more natural, as the positive sequent calculus is more closely related to
the notion of validity, in the same way as the negative system is more closely re-
lated to unsatisfiability. It is obvious how to adapt the presentation for a dual
system of negative natural deduction. All the results of this chapter remain
valid for the negative case.

4.2 Natural Deduction Systems

Let Γ be a (set) sequent, V + ⊆ V a set of designated truth values. The set of
non-designated truth values is then V − = V \ V +. We divide the sequent Γ
into its designated part Γ+ and its non-designated part Γ− in the obvious way:

Γ+ := 〈Γi | i = 1, . . . ,m; vi ∈ V +〉
Γ− := 〈Γi | i = 1, . . . ,m; vi ∈ V −〉

In natural deduction, we deal with inferences from certain assumptions Γ− to
certain conclusions Γ+. Such an inference is written thus:

Γ−

Γ+

The semantics employed here are the positive semantics for sequents. More pre-
cisely, an interpretation I makes an inference pattern true, if I p-satisfies Γ . In
other words, whenever all formulas in Γ− take a truth value not corresponding
to the place at which they stand, then some formula in Γ+ does take a truth
value corresponding to its place. In the two-valued case we have the following
situation: V = {t, f}, V + = {t}. An inference schema is of the form

Γ

∆

The meaning of this is that if everything in Γ is not false (i.e., true), then
something in ∆ is true. Hence, to say that it means “if Γ is true, then ∆
is true” is misleading, since we are dealing with a conjunction over Γ but a
disjunction over ∆. The disanalogy is even more apparent in the many-valued
case. Of course, in intuitionistic natural deduction, ∆ is a singleton, so the
problem only arises in the classical multiple-deduction calculus.

4.2. natural deduction systems 69

The natural deduction calculus acts on such inferences by giving rules how
some of these inferences can be combined or altered to give new inferences. This
will be made precise later. First, we give the deduction rules. These are based
on the introduction rules of the positive sequent calculus, modified as described
in Section 3.4 to deal with set-sequents and combinational rules.

4.2.1. Definition Let f be either 2 or Q, and let F be 2(A1, . . . , An) or
(Qx)A(x), respectively. Let an introduction rule for f at place i ∈ V + be given
as in Definition 3.4.1. The (natural deduction) introduction rule f :Ii for f at
place i ∈ V + is given by: 〈

Γ−j , d∆′f :i(j)
−e

Γ+
j , ∆

′
f :i(j)

+

〉
j∈I

Γ+, [i:F]

The formulas in d. . .e are those which can be discharged at this inference. If f
is Q, then the rule has to satisfy the appropriate eigenvariable conditions: The
eigenvariables in ∆′f :i(j) (j ∈ I) must not occur in Γ or in F = (Qx)A(x).

The partial sequents Γ+
j , ∆

′
f :i(j) are called the premises of the rule; Γ+, [i:F]

is called the conclusion.

4.2.2. Definition Let f be either 2 or Q, and let F be 2(A1, . . . , An) or
(Qx)A(x), respectively. Let an introduction rule for f at place i ∈ V − be given
as in Definition 3.4.1. The elimination rule f :Ei for f at place i ∈ V − is given
by:

Γ−0 , d[V − \ vi:F]e
Γ+

0 , [V
+:F]

〈
Γ−j , d∆′f :i(j)

−e
Γ+
j , ∆

′
f :i(j)

+

〉
j∈I

Γ+
0 , Γ

+

The formulas in square brackets are those which can be discharged at this
inference. If f is Q, then the rule has to satisfy the appropriate eigenvariable
conditions: The eigenvariables in ∆′f :i(j) (j ∈ I) must not occur in Γ0, Γ or in
F = (Qx)A(x).

The partial sequent Γ+
0 , [V

+:F] is called the major premise of the rule,
the partial sequents Γ+

j , ∆f :i(j) are called the minor premises of the rule, and

Γ+
0 Γ

+ is called the conclusion.

4.2.3. Example The introduction rule for ⊃ in the logic L3 is:

Γ, dAe | ∆, dAe
Π,B

Γ ′, dAe | ∆′, dBe
Π ′, B

Π,Π ′, A ⊃ B

The elimination rule at place p is:

Γ, dA ⊃ Be | ∆
Π,A ⊃ B

Γ ′′ | ∆′′, dAe
Π ′, A

Γ ′′ | ∆′′, dA,Be
Π ′′

Γ ′′′, dAe | ∆′′′]
Π ′′′, A

Π,Π ′, Π ′′, Π ′′′

70 chapter 4. natural deduction

The elimination rule at place f is:

Γ | ∆, dA ⊃ Be
Π,A ⊃ B

Γ ′′ | ∆′′
Π ′, A

Γ ′′, dBe | ∆′′
Π ′′

Π,Π ′, Π ′′

4.2.4. Remark Note that some of Gentzen’s original rules for LK are different
from the those as obtained by Definition 3.3.1, in that a rule for a given place is
split into two, which together give a complete characterization of the connective.
These rules can also be translated into natural deduction rules as above.

4.2.5. Definition A natural deduction system for a logic L is given by:

(1) Assumptions of the form [V −:A] where A is any formula,

(2) For every connective 2 and every truth value vi an introduction rule 2:Ii
(if vi ∈ V +) or an elimination rule 2:Ei (if vi ∈ V −);

(3) For every quantifier Q and every truth value vi an introduction rule Q:Ii
(if vi ∈ V +) or an elimination rule Q:Ei (if vi ∈ V −);

(4) The weakening rule for all vi ∈ V +:

Γ−

Γ+

Γ+, [i:A]
w: i

Weakenings are considered as introductions.

4.2.6. Definition A natural deduction derivation is defined inductively as fol-
lows:

(1) Let A be any formula. Then

[V −:A]

[V +:A]

is a derivation of A from the assumption [V −:A] (an initial derivation).

(2) If Dk are derivations of Γ+
k , ∆

+
k from the assumptions Γ−k , ∆̂

−
k , and〈

Γ−k , d∆
−
k e

Γ+
k , ∆

+
k

〉
k∈K

Π+

is an instance of a deduction rule with ∆̂−k a subsequent of ∆−k , and all
eigenvariable conditions are satisfied, then

〈Dk〉k∈K
Π+

is a derivation of Π+ from the assumptions
⋃
k∈K Γ

−
k . The formulas in

∆̂−k which do not occur in
⋃
k∈K Γ

−
k are said to be discharged at this

inference.

4.2. natural deduction systems 71

4.2.7. Definition We call a formula occurrence A

(1) the conclusion formula of an introduction, if it is the formula being intro-
duced, i.e., it is F in the conclusion [i:F];

(2) a premise formula of an introduction, if it is one of the formulas in∆′f :i(j)
+

in that introduction;

(3) a major premise formula of an elimination, if it is among the formula
being eliminated, i.e., in the major premise [V +:F];

(4) a minor premise formula of an elimination, if it is among the formulas in
∆′f :i(j)

+ in that elimination,

(5) a discharged assumption formula of an elimination, if it stands immedi-
ately below an assumption which contains the formulas in ∆′f :i(j)

− being
discharged at that elimination.

A formula occurrence A is said to follow A′, if both are of the same form and
A′ stands immediately above A at the same position.

4.2.8. Theorem (Soundness) If a partial sequent Γ+ can be derived from the
assumptions Γ−, then the following holds for every interpretation M: If no
formula in Γ−i (vi ∈ V −) evaluates to the truth value vi, then there a vj ∈ V +

and a formula in Γ+
j that evaluates to vj .

Proof. The statement of the theorem is obviously equivalent to: If Γ+ can be
derived from assumptions Γ−, then Γ is p-valid. We prove this by inductively
translating every derivation D of Γ+ from Γ− to a positive sequent calculus
proof of Γ :

(1) D is an initial derivation:
[V −:A]

[V +:A]

The translated proof π(D) is

[V :A]

which is an axiom.

(2) D ends in an introduction rule at place i:〈 Γ−j , d∆′f :i(j)
−e

.... Dj

Γj , ∆
′
f :i(j)

〉
j∈I

Γ+, F
f :Ii

The corresponding sequent calculus proof π(D) is:〈 π(Dj)
Γj , ∆

′
f :i(j)

〉
j∈I

Γ, [i:F]
f :i

72 chapter 4. natural deduction

(3) D ends in an elimination rule at place i:

Γ−0 , d[V − \ vi:F]e
.... D0

Γ+
0 , [V

+:F]

〈 Γ−j , d∆′f :i(j)
−e

.... Dj

Γ+
j , ∆

′
f :i(j)

+

〉
j∈I

Γ+
0 , Γ

+
f :Ei

Now let S be the following sequent deduction:〈 π(Dj)
Γj , ∆

′
f :i(j)

〉
j∈I

Γ, [i:F]
f :i

The corresponding sequent calculus proof π(D) is:

.... π(D0)

Γ0, [V \ {vi}:F]

.... S

Γ, [i:F]

Γ0, Γ, [V \ {v1, vi}:F]
cut:1i

.... S

Γ, [i:F]

Γ0, Γ, [V \ {v1, v2, vi}:F]
cut:2i

....
Γ0, Γ, [vm:F]

.... S

Γ, [i:F]

Γ0, Γ
cut:mi

(4) D ends in a weakening at place i: Add a weakening at place i to the
translated sequent calculus proof.

Note that eigenvariable conditions remain satisfied in π(D).

4.2.9. Remark Translating sequent rules for two-valued logic yield natural de-
duction elimination rules which differ from those given by Gentzen. However,
Gentzen’s rules can be obtained in a systematic way by a simplification of the
constructed rules. The resulting schema falls outside of our definition of nat-
ural deduction rules. We demonstrate this simplification pars pro toto for the
∀-elimination rule. The classical version as given by Parigot [1992] is:

Γ
∆, (∀x)A(x)

∆,A(t)

The constructed rule is:

Γ
∆, (∀x)A(x)

Γ ′, dA(t)e
∆′

∆,∆′

Taking {A(t)} for ∆′ and ∅ for Γ ′, we obtain Parigot’s rule by disregarding the
redundant right premise.

4.3. normal derivations 73

4.3 Normal Derivations

A maximum segment in the intuitionistic natural deduction calculus NJ is a
sequence of formulas in a derivation that starts with an introduction and end
with an elimination. In the classical multi-conclusion system, it is a sequence
starting with an introduction of a formula and ending in an elimination acting
on the same formula. A maximum segment constitutes a redundancy in the
proof. In NJ, and also in multi-valued natural deduction, there are always
proofs without such redundancies (see Prawitz [1971]).

4.3.1. Definition A sequence A1, . . . , Ar of occurrences of one and the same
formula is called a maximum segment, if A1 is the conclusion formula of an in-
troduction, Aj+1 stands immediately below Aj , and Ar is the the major premise
formula in an elimination.

4.3.2. Definition A normal derivation is a natural deduction derivation where
no major premise of an elimination stands below an introduction.

4.3.3. Proposition A normal derivation contains no maximum segments.

4.3.4. Theorem Every cut-free sequent calculus proof of a sequent Λ can be
translated into a normal natural deduction derivation of Λ+ from the assump-
tions Λ̂−, where Λ̂− ⊆ Λ−.

Proof. By induction on the height h of the proof P of Λ.
h = 1: Then Λ is an axiom of the form [V :A]. The corresponding natural

deduction proof δ(P) is the initial derivation

[V −:A]

[V +:A]

h > 1: We distinguish cases according to the last rule in P :

(1) P ends in an introduction rule for f at place vi ∈ V +. Λ is of the
form Γ, [i:F]: 〈 Pj

Γj , ∆
′
f :i(j)

〉
j∈I

Γ, [i:F]
f :i

Construct a natural deduction proof δ(P) of Γ+, [i:F] from the assump-
tions Γ− as follows: 〈 Γ−j , d∆′f :i(j)

−e
.... δ(Pj)

Γ+
j , ∆

′
f :i(j)

+

〉
j∈I

Γ+, [i:F]
f :Ii

This only adds an introduction at the end of the derivation, hence δ(P) is
normal.

74 chapter 4. natural deduction

(2) P ends in an introduction rule at place vi ∈ V −: Λ is of the form Γ, [i:F]:〈 Pj
Γj , ∆

′
f :i(j)

〉
j∈I

Γ, [i:F]
f :i

Construct a natural deduction proof δ(P) of Γ+ from the assumptions
Γ−, [i:F] as follows:

d[V \ vi:F]e, [vi:F]
[V +:F]

〈 Γ−j , d∆′f :i(j)
−e

.... δ(Pj)
Γ+
j , ∆

′
f :i(j)

+

〉
j∈I

Γm
f :Ei

This only adds an elimination at the beginning of a normal derivation,
hence δ(P) is normal.

(3) P ends in a weakening at place vi ∈ V +: Append a weakening at vi to
the natural deduction proof.

(4) P ends in a weakening at place vi ∈ V −: Do nothing.

Note that eigenvariable conditions remain satisfied in the translated proof.

4.3.5. Corollary (Completeness) Natural deduction systems are complete.

Proof. By Theorem 3.3.10, cut-free sequent calculus is complete, hence every
valid sequent Λ has a cut-free sequent calculus proof. The translation of this
proof yields a natural deduction derivation of Λ+ from the assumptions Λ̂−

(Λ̂− ⊆ Λ−). Every valid inference schema is of this form.

4.3.6. Corollary (Normal Form Property) For
every natural deduction derivation, there exists a normal natural deduction
derivation of the same set of formulas from a subset of the assumptions.

Proof. If there is a derivation of Λ+ from Λ− then by Theorem 4.2.8 there
is a cut-free sequent calculus proof of Λ, whose translation yields a normal
derivation.

4.3.7. Definition A path in a natural deduction derivation is a sequence of
occurrences of formulas A1, . . . , Ar s.t.

(1) A1 is either

(a) a formula standing immediately below an assumption or

(b) is the conclusion formula of an introduction without premise formulas
(e.g., weakenings);

4.3. normal derivations 75

(2) Ar is either

(a) an end formula of the derivation or

(b) a minor premise formula of an elimination or

(c) a major premise formula of an elimination without discharged as-
sumption formulas, and

(3) Aj+1 (1 ≤ j ≤ r − 1) is either

(a) a discharged assumption formula of an elimination rule, if Aj is the
major premise formula of that elimination, or

(b) the conclusion formula of an introduction if Aj is a premise formula
of that rule, or

(c) follows Aj .

4.3.8. Proposition A path in a normal derivation can be divided into three
(possibly empty) parts:

(1) The analytical part A1, . . . , Ap, where each formula is the major premise
formula of an elimination and stands immediately below an assumption;
Aj is a subformula of Aj−1 (2 ≤ j ≤ p).

(2) The minimum part Ap+1, . . . , Aq; Aj is equal to Aj+1 (p ≤ j ≤ q).

(3) The synthetical part Aq+1, . . . , Ar; Aq+1 is the conclusion formula of
an introduction with premise formula Aq; Aj−1 is a subformula of Aj
(q + 1 ≤ j ≤ r).

4.3.9. Remark If a cut-free sequent calculus proof with atomic axiom sequents
is translated as in the proof of Theorem 4.3.4, the minimum segment in a path
with non-empty analytical and synthetical part is atomic.

4.3.10. Remark It remains to be investigated for which collections of opera-
tors one can achieve strong normalization (i.e. normal form transformations
with Church-Rosser property) according to some reasonable definition. (See
Parigot [1992] for positive and Zucker [1974] for negative results in the two-
valued case.)

76

Chapter 5

Approximating Propositional Logics

5.1 Introduction

It is clear by what has been said so far that many-valued logics are, from the
perspective of proof theory, very close to classical logic. In particular, pro-
cedures for algorithmic proof search are very similar to those developed for
classical two valued logic, both in the concepts used and in their complexity.
Furthermore, the structural proximity to classical logic allows the translation
or adaptation of many strategies and heuristics which have been developed for
classical logic. This is especially true of propositional many-valued logic. The
resolution method can be carried much further than in Chapter 2, see for in-
stance Baaz and Fermüller [1992] or Baaz and Fermüller [1993]. The
method of tableaux, a calculus very similar to the (negative) sequent calculus,
can also be used for mechanical theorem proving in many-valued logics, see
Hähnle [1993a]. This approach has in fact produced an efficient tautology
checker for many-valued logics (see Hähnle et al. [1992]). Although satisfia-
bility in many-valued propositional logics is (as in classical logic) NP-complete
(see Mundici [1987]), this is still much better than several other propositional
formalisms currently under investigation. Especially in the area of logics for Ar-
tificial Intelligence, the corresponding decision problems are hard or complete
for classes higher up in the polynomial hierarchy (see, e.g., Eiter and Gott-
lob [1992]). From a practical point of view it seems natural to ask for other
logics, which in a sense approximate these more complex logics to a satisfactory
degree, but are not as complex themselves. The remarks above suggest that
many-valued logic might be an appropriate candidate for this task. Of course,
the results in this chapter are far from being applicable for real applications.
But they are, if not a first step in a promising direction, at least theoretically
appealing.

5.2 Propositional Logics

5.2.1. Definition A propositional language L consists of the following:

(1) propositional variables: X0, X1, X2, . . . , Xj , . . . (j ∈ ω)

(2) propositional connectives of arity nj : 2
n0
0 , 2n1

1 , . . . , 2nr
r . If nj = 0, then

77

78 chapter 5. approximating propositional logics

2j is called a propositional constant.

(3) Auxiliary symbols: (,), and , (comma).

Formulas are defined as usual. We denote the set of formulas over a lan-
guage L by Frm(L), or by simply by Frm if the language is understood. A
propositional many-valued logic M is given by a set of truth values V (M) =
{1, 2, . . . ,m}, the set of designated truth values V +(M), and a set of truth
functions 2̃i:V (M)i → V (M) for all connectives 2i.

5.2.2. Example Examples are provided by classical propositional logic and
propositional three-valued Lukasiewicz logic. These are given by the truth
functions for the connectives given in Examples 1.3.2 and 1.3.3. Further-
more, we have the sequence of m-valued Gödel logics Gm given by V (Gm) =
{0, 1, . . . ,m− 1}, the designated values V +(Gm) = {m− 1}, and the following
truth functions:

¬̃Gm(v) =

{
m− 1 for v = 0
0 for v 6= 0

∨̃Gm(v, w) = max(a, b)

∧̃Gm(v, w) = min(a, b)

⊃̃Gm(v, w) =

{
m− 1 for v ≤ w
w for v > w

This sequence of logics was used in Gödel [1932] to show that intuitionistic
logic can not be characterized by a finite matrix.

5.2.3. Definition A valuation I is a mapping from the set of propositional
variables into V (M). A valuation I can be extended in the standard way to
a function from formulas to truth values. I satisfies a formula F , in symbols:
I |=M F , if I(F) ∈ V +(M). In that case, I is called a model of F , otherwise
a countermodel. A formula F is a tautology of M iff it is satisfied by every
valuation. Then we write M |= F . We denote the set of tautologies of M by
Taut(M).

5.2.4. Definition A propositional logic L in the language L is given by a finite
set of propositional rule schemas R(L) being a subset of Frm∗. Rules of length 1
are called axioms. A formula F is a theorem of L, if there is a derivation of F
from R(L), i.e., a finite sequence

F1, F2, . . . , Fn = F

of formulas, s.t. for each Fi there is a rule 〈A1, . . . , An〉 ∈ R(L) where Fi is
a substitution instance of An, and there are k1, . . . , kn−1 < i s.t. Fkj is a
substitution instance of Aj (1 ≤ j ≤ n− 1). In that case we write L ` F . The
set of theorems of L is denoted by Thm(L).

5.2.5. Remark Propositional logics as defined here are always finitely axioma-
tized and have the substitution property. Many well-known propositional logics
are finitely axiomatizable, e.g., classical and intuitionistic propositional logic,
as well as many modal logics. The assumption of finite axiomatizability is used
essentially in some proofs.

5.3. singular approximations 79

5.2.6. Example Intuitionistic propositional logic H is given by the following
axioms (We give the axiomatization of Heyting [1930]):

a1 A ⊃ A ∧A
a2 A ∧B ⊃ B ∧A
a3 A ⊃ B ⊃ (A ∧B ⊃ B ∧ C)
a4 (A ⊃ B) ∧ (B ⊃ C) ⊃ (A ⊃ C)
a5 B ⊃ (A ⊃ B)
a6 A ∧ (A ⊃ B) ⊃ B
a7 A ⊃ A ∨B
a8 A ∨B ⊃ B ∨A
a9 (A ⊃ C) ∧ (B ⊃ C) ⊃ (A ∨B ⊃ C)
a10 ¬A ⊃ A ⊃ B
a11 (A ⊃ B) ∧ (A ⊃ ¬B) ⊃ ¬A

and the following rules (in usual notation):

A B
A ∧B

r1
A A ⊃ B

B
r2

5.3 Singular Approximations

First of all, we are interested in the relationship of many-valued logics to arbi-
trary logics in respect to the formulas they prove. In other words, what we are
interested in is the containment relation between Taut(M) and Thm(L):

5.3.1. Definition A many-valued logic M approximates a logic L iff
Thm(L) ⊆ Taut(M). M is called a (singular) approximation of L.

5.3.2. Example Every m-valued logic having the set of formulas Frm(L) as its
set of tautologies is a singular approximation of any logic. Less trivially, the
m-valued Gödel logic Gm is an m-valued singular approximation of H.

If we have an approximation of a given logic L, we have a simple test if
a formula is not a theorem of L: If F is not valid in M, then F cannot be
a theorem of L. Since we cannot hope for the converse to hold, unless L is a
many-valued logic, we want M to have as few theorems as possible. In fact,
we would like to be able to find the best m-valued approximation for a given
logic L. This is often possible, since

(1) all m-valued propositional logics for a language L can be enumerated
mechanically, and there is only a finite number of them,

(2) it is decidable of two m-valued logics given by their truth tables, which
of them has fewer theorems.

The additional condition which needs to be satisfied is this: It is decidable
whether an m-valued logic M approximates a given propositional logic L. The
naive test for this would be to check that M satisfies all axioms and rules of L.
However, this test might fail even though M actually is an approximation of L,

80 chapter 5. approximating propositional logics

e.g., if there are redundant rules. Therefore, we restrict attention to many-
valued logics where this test is positive. Such many-valued logics are called
sound approximations of L.

Set inclusion of the sets of theorems orders all m-valued logics for a language
into a finite complete lattice. The minimal elements in the lattice restricted to
(sound) approximations of a given logic L then are the optimal approximations
of L. We make all this precise.

5.3.3. Proposition There are
∏r
j=1m

mnj
many m-valued logics.

Proof. The number of different truth functions V nj → V equals |V V nj | =
mmnj

.

5.3.4. Proposition An m-valued logic M approximates the logic L if (not iff)

(A) for every rule r in R(L): if a valuation of the variables in r makes all the
premises of r true, it also makes the conclusion true.

Proof. If: Let L ` F . We show that M |= F by induction on the length l of
the derivation in L:

l = 1: This means F is a substitution instance of an axiom A. By hypothesis,
M |= A. Let I be a valuation of the variables in F . Let X1, X2, . . . , Xn be all
the variables in A, let F = A[B1/X1, . . . , Bn/Xn] and let vi = I(Bi) (1 ≤ i ≤ n).
By hypothesis, M |= A and, a fortiori, {X1 7→ v1, . . . , Xn 7→ vn} |= A. But this
means that I |= F . Hence, M |= F .

l > 1. F is the conclusion of a rule r ∈ R(L). If r is 〈A1, . . . , Ak, A〉, and
X1, X2, . . . , Xn are all the variables in A, A1, . . . , Ak, then the inference has
the form

A1[B1/X1, . . . , Bn/Xn] . . . Ak[B1/X1, . . . , Bn/Xn]

F = A[B1/X1, . . . , Bn/Xn]
r

Let I be a valuation of the variables in F , and let vi = I(Bi) (1 ≤ i ≤ n).
By induction hypothesis, the premises of r are valid. This implies that, for
1 ≤ i ≤ k, we haveu {X1 7→ v1, . . . , Xn 7→ vn} |= Ai. By hypothesis then,
{X1 7→ v1, . . . , Xn 7→ vn} |= A. But this means that I |= F . Hence, M |= F .

5.3.5. Definition An m-valued logic M soundly approximates a given logic L
iff condition (A) of Proposition 5.3.4 holds.

5.3.6. Corollary It is decidable if a given m-valued logic M soundly approx-
imates a given propositional logic L.

Proof. There are only finitely many rules to check, and condition (A) of
Proposition 5.3.4 can be checked in finite time.

5.3. singular approximations 81

5.3.7. Remark The adjective sound has been chosen because a many-valued
logic M which is an approximation but not a sound approximation of a given
logic L has the following paradoxical property:

For M we can construct the positive sequent calculus as in Chapter 3. Every
rule of L can be written as a sequent calculus rule as follows: Let 〈F1, F2, . . . , Fn〉
be the rule in question. The corresponding sequent calculus rule is:

Γ, [V +:F1] . . . Γ, [V +:Fn−1]

Γ, [V +:Fn]

The system resulting from combining these rules with the sequent calculus for
M becomes unsound when all truth value constants are added.

5.3.8. Example The m-valued Gödel logics Gm are sound approximations
of H. For instance, take axiom a3: B ⊃ A ⊃ B. This is a tautology in Gm,
for assume we assign some truth values a and b to A and B, respectively. We
have two cases: If a ≤ b, then (A ⊃ B) takes the value m − 1. Whatever b is,
it certainly is ≤ m − 1, hence B ⊃ A ⊃ B takes the designated value m − 1.
Otherwise, A ⊃ B takes the value b, and again (since b ≤ b), B ⊃ A ⊃ B takes
the value m− 1.

Modus ponens (r2) also passes the test: Assume A and A ⊃ B both take
the value m− 1. This means that a ≤ b. But a = m− 1, hence b = m− 1.

5.3.9. Remark In connection with the relation of approximations and sound
approximations the following questions are open, which have an influence on
the applicability and range of the results in this chapter:

By Proposition 5.3.4 it is decidable whether a given m-valued logic soundly
approximates a given logic. Is the corresponding problem decidable or undecid-
able for approximations in general? Are there reasonable classes of logics where
it is decidable? Is there a way to determine, for a given (class of) logic(s),
whether it has only sound approximations?

What are the reasons for the discrepancy between approximations and sound
approximations? We have the following situation: An m-valued logic M and a
logic L are given. M singularly approximates L, but the test fails. This may
be due to (at least) two reasons: (1) The axiom system for L contains a rule for
which the test fails, but which is never actually used in a deduction in L. (2) If
the test fails, this means that there is a rule r in L and an assignment to the
variables occurring in r, s.t. the premises of r are true but the conclusion is true.
Now it is prima facie conceivable that those formulas which, if substituted for
the variables in the premises, make those premises provable, actually never take
the truth values of the counterexample. For instance, r might be F (X) ` G(X),
and for an interpretation with val(X) = v we have that F (X) is true but G(X)
is false. But what we would in fact want to test if whether it is possible for a
theorem of L of the form F (H) to be true in M while G(H) is false. But it
is conceivable that no formula H for which F (H) is a theorem of L ever takes
the truth value v in M. The questions now are: Do such effects ever happen?
Do they happen in “interesting” logics? Is it decidable, given a set of rules,
whether such things happen?

82 chapter 5. approximating propositional logics

5.3.10. Definition An m-valued logic M1 is better than M2, M1 � M2, iff
Taut(M1) ⊂ Taut(M2).

5.3.11. Theorem Let two m-valued logics M1, M2 be given. It is decidable
whether M1 � M2.

Proof. It suffices to show the decidability of the following property: There is
a formula A, s.t. (*) M2 |= A but M1 6|= A.

We show this by giving an upper bound on the depth of a minimal for-
mula A satisfying the above property. Since the set of formulas of L is enumer-
able, bounded search will produce such a formula iff it exists. Note that the
property (*) is decidable by enumerating all assignments.

Let A be a formula that satisfies (*), i.e., there is a valuation I s.t. I6|=M1
A.

W.l.o.g. we can assume that A contains at most m different variables: if it
contained more, some of them must be evaluated to the same truth value in the
counterexample I for M1 6|= A. Unifying these variables leaves (*) intact.

Let B = {B1, B2, . . .} be the set of all subformulas of A. Every formula Bj
defines an m-valued truth function f(Bj) of m variables where the values of the
variables which actually occur in Bj determine the value of f(Bj) via the matrix
of M2. On the other hand, every Bj evaluates to a single truth value t(Bj) in
the countermodel I.

Consider the formula A′ constructed from A as follows: Let Bi be a sub-
formula of A and Bj be a proper subformula of Bi (and hence, a proper sub-
formula of A). If f(Bi) = f(Bj) and t(Bi) = t(Bj), replace Bi in A with Bj .
A′ is shorter than A, and it still satisfies (*). By iterating this construction
until no two subformulas have the desired property we obtain a formula A∗.
This procedure terminates, since A′ is shorter than A; it preserves (*), since A′

remains a tautology under M2 (we replace subformulas behaving in exactly the
same way under all valuations) and the countermodel I is also a countermodel
for A′.

The depth of A∗ is bounded above by mmm+1−1. This is seen as follows: If
the depth of A∗ is d, then there is a sequence A∗ = B′0, B

′
1, . . . , B

′
d of subformulas

of A∗ where B′k is an immediate subformula of B′k−1. Every such B′k defines
a truth function f(B′k) of m variables in M2 and a truth valued t(B′k) in M1

via I. There are mmm
m-ary truth functions of m truth values. The number of

distinct truth function-truth value pairs then is mmm+1. If d ≥ mmm+1, then
two of the B′k, say B′i and B′j where B′j is a subformula of B′i define the same
truth function and the same truth value. But then B′i could be replaced by B′j ,
contradicting the way A∗ is defined.

5.3.12. Corollary It is decidable if two m-valued logics define the same set
of tautologies. The non-strict relation � between m-valued logics is decidable.

Proof. Taut(M1) = Taut(M2) iff neither M1 � M2 nor M2 � M1. M1 �

M2 iff M1 � M2 or Taut(M1) = Taut(M2).

Let ' be the equivalence relation on m-valued logics defined by: M1 'M2

iff Taut(M1) = Taut(M2), and let MVLm be the set of all m-valued logics

5.4. sequential approximations 83

over L. By Mm we denote the set of all sets Taut(M) of tautologies of m-valued
logics M . The partial order 〈Mm,⊆〉 is isomorphic to 〈MVLm/ ',�〉.

5.3.13. Proposition 〈Mm,�〉 is a finite complete partial order.

Proof. The set of m-valued logics MVLm is obviously finite, since there are
at most mn1mn2 · · ·mnc different m-valued matrices for C. � is a partial order
on MVLm/ ' with the smallest element ⊥ := Frm(L) and the largest element
> := ∅.

The “best” logic is the one without theorems, generated by a matrix where
no connective takes a designated truth value anywhere. The “worst” logic is
the one where every formula of L is a tautology, it is generated by a matrix
where every connective takes a designated truth value everywhere.

In every complete partial order over a finite set, there exist lub and glb
for every two elements of the set. Hence, 〈M,4,5,⊥,>〉 is a finite complete
lattice, where 4 is the lub in �, and 5 is the glb in �. Since � is decidable
and M can be automatically generated the functions 4 and 5 are computable.

5.3.14. Proposition The optimal (i.e., minimal under ⊆) m-valued sound ap-
proximations of a logic L are computable.

Proof. Consider the set A(L) of m-valued sound approximations of L. Since
A(L) is finite and partially ordered by �, A(L) contains minimal elements.
The relation � is decidable, hence the minimal sound approximations can be
computed.

5.3.15. Remark Of course, the best approximation one could wish for is a many-
valued logic M whose tautologies coincide with the theorems of L. L then
provides an axiomatization of M. This of course is not always possible, at
least for finite-valued logics. Lindenbaum has shown that any logic (in our
sense, given by a set of rules and with substitution) can be characterized by an
infinite-valued logic, see Lukasiewicz and Tarski [1930]. For a discussion of
related questions see also Rescher [1969], § 24. Note that Rescher’s notions
of captures and adequate correspond to our singular approximation and sound
approximation, respectively.

5.4 Sequential Approximations

In the previous section we have shown that it is always possible to obtain the
best sound m-valued approximation of a given logic, but there is no way to tell
how good these approximations are. For all we know, the best approximations
for a given logic L might only be those M having Frm(L) as their sets of
tautologies, even though Thm(L) ⊂ Frm(L). It is hardly appropriate, then
to call M an approximation of L, since it is far from being “close” to L. But
how can we measure this “closeness” of many-valued logics to arbitrary logics?
Clearly, a sensible measure is not easily defined by considering single many-
valued logics. It is certainly more promising to take a step back and look at
collections, say infinite sequences of many-valued logics.

84 chapter 5. approximating propositional logics

5.4.1. Definition
Let a logic L be given and let A = 〈M1,M2,M3, . . . ,Mj , . . .〉 (j ∈ ω) be a
sequence of many-valued logics s.t.

(1) Mi � Mj iff i ≥ j, and

(2) Mi is a singular approximation of L.

A is called a sequential approximation of L iff Thm(L) =
⋂
j∈ω Taut(Mj). We

say L is approximable, if there is such a sequential approximation for L.

5.4.2. Example Consider the sequence G = 〈G2,G3,G4, . . .〉 of Gödel log-
ics and intuitionistic propositional logic H. Taut(Gi) ⊃ Thm(H), since Gi is a
sound approximation of H. Furthermore, Gi+1 � Gi. This has been pointed out
by Gödel [1932], for a detailed proof see Gottwald [1989], Satz 3.4.1. How-
ever, it is not a sequential approximation of H: The formula (A ⊃ B)∧(B ⊃ A),
while not a theorem of H, is a tautology of all Gi. In fact,

⋂
j≥2 Taut(Gi) is the

set of tautologies of the infinite-valued Gödel logic Gℵ, which is axiomatized by
the rules of H plus the above formula. This has been shown in Dummett [1959]
(see also Gottwald [1989], § 3.4). Hence, G is a sequential approximation of
Gℵ = H + (A ⊃ B) ∧ (B ⊃ A).

Jaśkowski [1963] gave a sequential approximation of H. For this see also
Rose [1958], Surma [1973], as well as Surma et al. [1975]. That H is ap-
proximable is also a consequence of Theorem 5.4.14, with the proof adapted to
Kripke semantics for intuitionistic propositional logic, since H has the fmp (see
Gabbay [1981], Ch. 4, Theorem 4(a)).

The notion of approximabilty is of interest in itself, but moreover it tells us
something about the quality of singular approximations: As has been pointed
out above, there is no way to guarantee that we can come as close to a given
logic with our singular approximation as we want to (if we only allow sufficiently
many truth values). However, if L is approximable, then every formula false
in L will also be falsified in a singular approximation of L with sufficiently many
truth values.

The natural question to ask is: Which logics are approximable? Here we
can give a negative answer for undecidable logics, and a positive answer for (a
class of) logics with the finite model property.

5.4.3. Proposition Let L be an undecidable propositional logic. Then L is
not approximable.

Proof. Since L is given by an axiom system, its set of theorems is r.e. Con-
sequently, its set of non-theorems cannot be r.e. If L were approximable, there
were a sequence A = 〈M1,M2,M3, . . .〉 s.t.

⋂
j≥2 Taut(Mj) = Thm(L). If N

is a non-theorem of L, then there would be an index i s.t. N is false in Mi.
But this would yield a semi-decision procedure for non-theorems of L: Try for
each j whether N is false in Mj . If N is a non-theorem, this will be estab-
lished at j = i, if not, we may go on forever. This contradicts the fact that the
non-theorems are not r.e.

5.4. sequential approximations 85

5.4.4. Example This shows that a result similar to that of Jaśkowski [1963]
cannot be obtained for full propositional linear logic. This logic is undecid-
able, as has been shown by Lincoln et al. [1990] (see also Troelstra [1992],
Ch. 20).

For the positive result, note that a basic fact about sequential approxima-
tions is that every non-theorem of L is falsified in some Mi. Compare this to
the finite model property of modal logics, which says that every non-theorem A
of a modal logic L is falsified in some finite Kripke model. These countermodels
can be coded into many-valued logics which are singular approximations of L
but which also falsify A, too. By a product construction, this gives a singular
approximation of L.

The following definitions are taken from Chellas [1980].

5.4.5. Definition A modal logic L has as its language L the usual propo-
sitional connectives plus two unary modal operators: 2 (necessary) and 3

(possible). A Kripke model for L is a triple 〈W,R,P 〉, where

(1) W is any set: the set of worlds,

(2) R ⊆W 2 is a binary relation on W : the accessibility relation,

(3) P is a mapping from the propositional variables to subsets of W .

A modal logic L is characterized by a class of Kripke models for L.

This is called the standard semantics for modal logics (see Chellas [1980],
Ch. 3). The semantics of formulas in standard models is defined as follows:

5.4.6. Definition Let L be a modal logic, KL be its characterizing class of
Kripke models. Let K = 〈W,R,P 〉 ∈ KL be a Kripke model and A be a modal
formula.

If α ∈ W is a possible world, then we say A is true in α, α |=L A, iff the
following holds:

(1) A is a variable: α ∈ P (X)

(2) A ≡ ¬B: not α |=L B

(3) A ≡ B ∧ C: α |=L B and α |=L C

(4) A ≡ B ∨ C: α |=L B or α |=L C

(5) A ≡ 2B: for all β ∈W s.t. α R β it holds that β |=L B

(6) A ≡ 3B: there is a β ∈W s.t. α R β and β |=L B

We say A is true in K, K |=L A, iff for all α ∈W we have α |=L A. A is valid in
L, L |= A, iff A is true in every Kripke model K ∈ KL. By Taut(L) we denote
the set of all formulas valid in L.

86 chapter 5. approximating propositional logics

5.4.7. Example The modal logic S5 is characterized by the class of universal
models, i.e., Kripke models where R = W 2. It can be shown that it is also
characterized by the class of models where R is an equivalence relation (see
Chellas [1980], Theorem 3.13).

Modal logics as considered in the literature are also propositional logics in
the sense of Definition 5.2.4, i.e., they can be axiomatized by a finite set of
rules. If this is the case, then the valid formulas of La.k.a. theorems are r.e.

5.4.8. Example The modal logic S5 is axiomatized by the following axioms
(see Chellas [1980], § 1.2):

T 2A ⊃ A
5 3A ⊃ 23A
K 2(A ⊃ B) ⊃ (2A ⊃ 2B)
Df3 3A ≡ ¬2¬A

in addition to the usual axioms for classical propositional logic, and the following
rules (in usual notation):

A
2A

RN
A A ⊃ B

B
MP

A common method for proving that a modal logic is decidable is connected
with the so-called finite model property:

5.4.9. Definition Let L be a modal logic characterized by K. L has the finite
model property (fmp) iff for every A s.t. L 6|= A, there is a finite Kripke model
K = 〈W,R,P 〉 ∈ K (i.e., W is finite), s.t. K 6|=L A.

We would like to exploit the fmp of a modal logic L to construct a sequential
approximation of L. First, we define a product operator on many-valued logics:

5.4.10. Definition Let M and M′ be m and m′-valued logics, respectively.
Then M ×M′ is the mm′-valued logic where V (M ×M′) = V (M) × V (M′),
V +(M×M′) = V +(M)× V (M′), and truth functions are defined component-
wise. I.e., if 2 is an n-ary connective, then

2̃M×M′(w1, . . . , wn) = 〈2̃M, 2̃M′〉.

For convenience, we define the following: Let I and I′ be valuations of M
and M′, respectively. I×I′ is the valuation of M×M′ defined by: (I×I′)(X) =
〈I(X), I′(X)〉. If I× is a valuation of M ×M′, then the valuations π1I

× and
π2I
× of M and M′, respectively, are defined by π1I

×(X) = v and π2I
×(X) = v′

iff I×(X) = 〈v, v′〉.

5.4.11. Lemma Taut(M×M′) = Taut(M) ∩ Taut(M′)

5.4. sequential approximations 87

Proof. Let A be a tautology of M×M′ and I and I′ be valuations of M and
M′, respectively. Since I× I′ |=M×M′ A, we have I |=M A and I′ |=M′ A by the
definition of ×. Conversely, let A be a tautology of both M and M′, and let I×

be a valuation of M×M′. Since π2I
× |=M A and π2I

× |=M′ A, it follows that
I× |=M×M′ A.

The definition and lemma are easily generalized to the case of finite products∏
i Mi by induction.

5.4.12. Definition Let K = 〈W,R,P 〉 be a finite Kripke model. We define
the many-valued logic MK as follows:

(1) V (MK) = {0, 1}W , the set of 0-1-sequences with indices from W .

(2) V +(MK) = {1}W , the singleton of the sequence constantly equal to 1.

(3) ¬̃MK
, ∨̃MK

, ∧̃MK
, ⊃̃MK

are defined componentwise from the classical
truth functions

(4) 2̃MK
is defined as follows:

2̃MK
(〈wα〉α∈W)β =

{
1 if for all γ s.t. β R γ, wγ = 1
0 otherwise

(5) 3̃MK
is defined as follows:

3̃MK
(〈wα〉α∈W)β =

{
1 if there is a γ s.t. β R γ and wγ = 1
0 otherwise

Furthermore, IK is the valuation defined by IK(X)α = 1 iff α ∈ P (X) and = 0
otherwise.

5.4.13. Lemma Let L and K be as in Definition 5.4.12. Then the following
hold:

(1) Every valid formula of L is a tautology of MK .

(2) If K 6|=L A then IK 6|=MK
A.

Proof. Let B be a modal formula, and K ′ = 〈W,R,P ′〉. We prove by
induction that valIK′ (B)α = 1 iff K′ |=L B:

B is a variable: P ′(B) = W iff IK(B)α = 1 for all α ∈ W by definition
of IK .

B ≡ ¬C: By the definition of ¬̃MK
, valIK (B)α = 1 iff valIK (C)α = 0. By

induction hypothesis, this is the case iff α 6|=L C. This in turn is equivalent to
α |=K B. Similarly if B is of the form C ∧D, C ∨D, and C ⊃ D.

B ≡ 2C: valIK (B)α = 1 iff for all β with α R β we have valIK (C)β = 1.
By induction hypothesis this is equivalent to β |=L C. But by the definition of
2 this obtains iff α |=L B. Similarly for 3.

(1) Every valuation I of MK defines a function PI via PI(X) = {α | I(X)α =
1}. Obviously, I = IPI

. If L |= B, then 〈W,R,PI〉 |=L B. By the preceding

88 chapter 5. approximating propositional logics

argument then valI(B)α = 1 for all α ∈ W . Hence, B takes the designated
value under every valuation.

(2) A is not true in K. This is the case only if there is a world α at which it
is not true. Consequently, valIK (A)α = 0 and A takes a non-designated truth
value under IK .

5.4.14. Theorem Let L be a modal logic with the fmp, and 〈A1, A2, . . .〉 an
enumeration of its non-theorems. A sequential approximation of L is given by
〈M1,M2, . . .〉 where M1 = MK1 , and Mi+1 = Mi ×MKi+1 where Ki is the
smallest finite model s.t. Ki 6|=L Ai

Proof. (1) Taut(Mi) ⊇ Taut(L): By inducton on i: For i = 1 this is
Lemma 5.4.13 (1). For i > 1 the statement follows from Lemma 5.4.11, since
Taut(Mi−1) ⊇ Taut(L) by induction hypothesis, and Taut(MKi) ⊇ Taut(L)
again by Lemma 5.4.13 (1).

(2) Mi � Mi+1 from A ∩B ⊆ A and Lemma 5.4.11.
(3) Taut(L) =

⋂
i≥1 Taut(Mi). The ⊆-direction follows immediately

from (1). Furthermore, by Lemma 5.4.13 (2), no non-tautology of L can be
a member of all Taut(Mi), whence ⊇ holds.

5.4.15. Remark Note that Theorem 5.4.14 does not hold in general if L is not
finitely axiomatizable. This follows from Proposition 5.4.3 and the existence of
an undecidable recursively axiomatizable modal logic which has the fmp (see
Urquhart [1981]). Note also the condition in Theorem 5.4.14 that there is an
enumeration of the non-theorems of L. Since finitely axiomatizable logics with
the fmp are decidable (Harrop [1958]), there always is such an enumeration
for the logics we consider.

Bibliography

Avron, A.

[1991] Natural 3-valued logics—characterization and proof theory.
J. Symbolic Logic, 56(1), 276–294.

[1992] Axiomatic systems, deduction and implication. J. Logic Comput.,
2(1), 51–98.

[1993] Gentzen-type systems, resolution and tableaux. J. Automated
Reasoning, 10, 265–281.

Baaz, M., C. G. Fermüller, A. Ovrutcki, and R. Zach.

[1993] MULTLOG: A system for axiomatizing many-valued logics. In
Logic Programming and Automated Reasoning. Proceedings
LPAR’93, A. Voronkov, editor, LNAI 698, 345–347, Springer,
Berlin.

Baaz, M., C. G. Fermüller, and R. Zach.

[1993a] Dual systems of sequents and tableaux for many-valued logics.
Bull. EATCS, 51. paper read at 2nd Workshop on Tableau-based
Deduction, Marseille, April 1993.

[1993b] Systematic construction of natural deduction systems for
many-valued logics. In Proc. 23rd International Symposium on
Multiple-valued Logic, 208–213, IEEE Press, Sacramento, CA.

Baaz, M. and C. G. Fermüller.

[1992] Resolution for many-valued logics. In Logic Programming and
Automated Reasoning. Proceedings LPAR’92, A. Voronkov, editor,
LNAI 624, 107–118, Springer, Berlin.

[1993] Resolution-based theorem proving for many-valued logics.
submitted.

Baaz, M. and A. Leitsch.

[1992] Complexity of resolution proofs and function introduction. Ann.
Pure Appl. Logic, 57, 181–215.

Baaz, M.

[1984] Die Anwendung der Methode der Sequenzialkalküle auf
nichtklassische Logiken. Dissertation, Universität Wien.

[1989] Automatisches Beweisen für endlichwertige Logiken. Jahrb.
Kurt-Gödel-Gesellschaft, 105–107.

89

90 bibliography

[1992] Automatisches Beweisen für endlichwertige Logiken. Mitt. Math.
Ges. Hamburg, 12(4), 1141–1155.

Becchio, D. and J.-F. Pabion.
[1977] Gentzen’s techniques in the three-valued logic of Lukasiewicz

(Abstract). J. Symbolic Logic, 42, 123–124.

Beth, E. W.
[1955] Semantic entailment and formal derivability. Med. Konink.

Nederl. Acad. Wetensch. Aft. Letterkunde, 18(13), 309–342.

Bolc, L. and P. Borowik.
[1992] Many-Valued Logics 1. Theoretical Foundations. Springer, Berlin.

Borowik, P.
[1985] Multi-valued n-sequential propositional logic (Abstract).

J. Symbolic Logic, 52, 309–310.

Carnielli, W. A.
[1987a] The problem of quantificational completeness and the

characterization of all perfect quantifiers in 3-valued logics.
Z. Math. Logik Grundlag. Math., 33, 19–29.

[1987b] Systematization of finite many-valued logics through the method of
tableaux. J. Symbolic Logic, 52(2), 473–493.

[1991] On sequents and tableaux for many-valued logics. J. Non-Classical
Logic, 8(1), 59–76.

Chang, C. C. and J. Keisler.
[1966] Continous Model Theory. Princeton University Press, Princeton.

Chang, C.-L. and R. C.-T. Lee.
[1973] Symbolic Logic and Mechanical Theorem Proving. Academic

Press, London.

Chellas, B. F.
[1980] Modal Logic: An Introduction. Cambridge University Press,

Cambridge.

Cohen, D. I. A.
[1978] Basic Techniques of Combinatorial Theory. Wiley, New York.

Craig, W.
[1957] Three uses of the Herbrand-Gentzen theorem in relating model

theory and proof theory. J. Symbolic Logic, 22, 269–285.

Dummett, M.
[1959] A propositional calculus with denumerable matrix. J. Symbolic

Logic, 24, 97–106.

Eiter, T. and G. Gottlob.
[1992] On the Complexity of Propositional Knowledge Base Revision,

Updates, and Counterfactuals. Artificial Intelligence, 57(2–3),
227–270.

Gabbay, D. M.
[1981] Semantical Investigations in Heyting’s Intuitionistic Logic.

Synthese Library 148. Reidel, Dordrecht.

bibliography 91

Gentzen, G.
[1934] Untersuchungen über das logische Schließen I–II. Math. Z., 39,

176–210, 405–431.

Gill, R. R. R.
[1970] The Craig-Lyndon interpolation theorem in 3-valued logic.

J. Symbolic Logic, 35, 230–238.

Ginsberg, M. L.
[1988] Multivalued logics: A uniform approach to reasoning in artificial

intelligence. Comput. Intell., 4, 265–316.

Girard, J.-Y.
[1987] Linear logic. Theoret. Comput. Sci., 50, 1–102.

Gödel, K.
[1932] Zum intuitionistischen Aussagenkalkül. Anz. Akad. Wiss. Wien,

69, 65–66.

Gottwald, S.
[1989] Mehrwertige Logik. Akademie-Verlag, Berlin.

Hähnle, R., B. Beckert, S. Gerberding, and W. Kernig.
[1992] The many-valued tableau-based theorem prover 3T

AP . IWBS
Report, Wissenschaftliches Zentrum Heidelberg, IWBS, IBM
Deutschland.

Hähnle, R. and W. Kernig.
[1993] Verification of switch level designs with many-valued logic. In

Logic Programming and Automated Reasoning. Proceedings
LPAR’93, A. Voronkov, editor, LNAI 698, 158–169, Springer,
Berlin.

Hähnle, R.
[1992] Tableaux-Based Theorem Proving in Multiple-Valued Logics. PhD

thesis, Universität Karlsruhe, Institut für Logik, Komplexität und
Deduktionssysteme.

[1993a] Automated Proof Search in Multiple-Valued Logics. Oxford
University Press, Oxford.

[1993b] Short conjunctive forms in finitely-valued logics. In Methodologies
for Intelligent Systems. Proceedings ISMIS’93, J. Komorowski and
Z. W. Raś, editors, LNCS 689, Springer, Berlin.

Hanazawa, M. and M. Takano.
[1985] An interpolation theorem in many-valued logic. J. Symbolic Logic,

51(2), 448–452.

Harrop, R.
[1958] On the existence of finite models and decision procedures for

propositional calculi. Proceedings of the Cambridge Philosophical
Society, 54, 1–13.

Heyting, A.
[1930] Die formalen Regeln der intuitionistischen Logik. Sitzungsber.

Preuß. Akad. Wiss. Phys.-Math. Kl. II, 42–56.

92 bibliography

Hilbert, D. and P. Bernays.
[1939] Grundlagen der Mathematik II. Springer.

Jaśkowski, S.
[1963] Recherches sur la système de la logique intuitioniste. In Actes du

Congrès International de Philosophie Scientifique 1936, 6, 58–61,
Paris.

Kirin, V. G.
[1966] Gentzen’s method for the many-valued propositional calculi.

Z. Math. Logik Grundlag. Math., 12, 317–332.
[1968] Post algebras as semantic bases of some many-valued logics. Fund.

Math., 63, 278–294.

Kleene, S. C.
[1952] Introduction to Metamathematics. North-Holland, Amsterdam.

Kowalski, R. and P. J. Hayes.
[1969] Semantic trees in automated theorem proving. In Machine

Intelligence 4, B. Meltzer and D. Michie, editors, 87–101.
Edinburgh University Press, Edinburgh.

Krzystek, P. S. and S. Zachorowski.
[1977] Lukasiewicz logics have not the interpolation property. Rep. Math.

Logic, 9, 39–40.

Leitsch, A.
[1989] On different concepts of resolution. Z. Math. Logik Grundlag.

Math., 35, 71–77.
[1993] The Resolution Calculus. AILA Preprint 15. Associazione Italiana

di Logica e sue Applicazioni. Lecture Notes from the 4th European
Summer School in Logic, Language, and Information, August 1992.

Lincoln, P. D., J. Mitchell, A. Scedrov, and N. Shankar.
[1990] Decision proplems for propositional linear logic. In Proc. 31st

IEEE Symp. Foundations of Computer Science FOCS, St. Louis,
Missouri.

Loveland, D. W.
[1978] Automated Theorem Proving: A Logical Basis. Fundamental

Studies in Computer Science 6. North-Holland, Amsterdam.

 Lukasiewicz, J. and A. Tarski.
[1930] Untersuchungen über den Aussagenkalkül. Comptes rendus des

séances de la Société des Sciences et des Lettres de Varsovie Cl. III,
23, 1–21.

 Lukasiewicz, J.
[1920] O logice tròjwartościowej. Ruch Filozoficzny, 5, 169–171.

translated in McCall [1967].

Maehara, S.
[1960] On the interpolation theorem of Craig (Japanese). Sugaku, 12,

235–237.

bibliography 93

McCall, S., editor.

[1967] Polish Logic 1920–1939. Oxford University Press, London.

Miyama, T.

[1974] The interpolation theorem and Beth’s theorem in many-valued
logic. Math. Japon., 19, 341–355.

Morgan, C. G.

[1976] A resolution principle for a class of many-valued logics. Logique et
Analyse, 311–339.

Mostowski, A.

[1963] The Hilbert epsilon function in many-valued logics. Acta Philos.
Fenn., 16, 169–188.

Mundici, D.

[1987] Satisfiability in many-valued sentential logic is NP-complete.
Theoret. Comput. Sci., 52, 145–153.

Ohya, T.

[1967] Many valued logics extended to simply type theory. Sci. Rep.
Tokyo Kyoiku Daigaku Sect A, 9, 84–94.

Parigot, M.

[1992] λµ-Calculus: an algorithmic interpretation of classical natural
deduction. In Logic Programming and Automated Reasoning.
Proceedings LPAR’92, A. Voronkov, editor, LNAI 624, 190–201,
Springer, Berlin.

[1993] The computational meaning of classical proofs. In Computational
Logic and Proof Theory. Proc. 3rd Kurt Gödel Colloquium,
G. Gottlob, A. Leitsch, and D. Mundici, editors, LNCS 731,
263–276, Springer, Berlin.

Post, E. L.

[1921] Introduction to a general theory of propositions. Amer. J. Math.,
43, 163–185. reprinted in van Heijenoort [1967].

Prawitz, D.

[1971] Ideas and results in proof theory. In Proceedings of the Second
Scandinavian Logic Symposium, J. E. Fenstad, editor, 235–307,
North-Holland, Amsterdam.

Przymusińska, H.

[1980a] Gentzen-type semantics for ν-valued infinitary predicate calculi.
Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys., 28(5–6),
203–206.

[1980b] Craig interpolation theorem and Hanf number for ν-valued
infinitary predicate calculi. Bull. Acad. Polon. Sci. Sér. Sci. Math.
Astronom. Phys., 28(5–6), 207–211.

94 bibliography

Rasiowa, H.
[1972] The Craig interpolation theorem for m-valued predicate calculi.

Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys., 20(5),
341–346.

[1974] An Algebraic Approach to Non-classical Logics. Studies in
Logic 78. North Holland, Amsterdam.

Rescher, N.
[1969] Many-valued Logic. McGraw-Hill, New York.

Robinson, J. A.
[1965] A machine-oriented logic based on the resolution principle.

J. Assoc. Comput. Mach., 12(1), 23–41.

Rose, G. F.
[1958] Propositional calculus and realizability. Trans. Amer. Math. Soc.,

75, 1–19.

Rosser, J. B. and A. R. Turquette.
[1952] Many-Valued Logics. Studies in Logic. North-Holland,

Amsterdam.

Rousseau, G.
[1967] Sequents in many valued logic I. Fund. Math., 60, 23–33.
[1970] Sequents in many valued logic II. Fund. Math., 67, 125–131.

Saloni, Z.
[1972] Gentzen rules for the m-valued logic. Bull. Acad. Polon. Sci. Sér.

Sci. Math. Astronom. Phys., 20(10), 819–826.

Schröter, K.
[1955] Methoden zur Axiomatisierung beliebiger Aussagen- und

Prädikatenkalküle. Z. Math. Logik Grundlag. Math., 1, 241–251.

Schütte, K.
[1956] Ein System des verknüpfenden Schließens. Arch. Math. Logik

Grundlag., 2, 55–67.
[1962] Der Interpolationssatz der intuitionistischen Prädikatenlogik.

Math. Ann., 148, 192–200.

Scott, D. S.
[1976] Does many-valued logic have any use? In Philosophy of Logic,

S. Körner, editor, 64–74. Basil Blackwell, Oxford.

Stachniak, Z. and P. O’Hearn.
[1990] Resolution in the domain of strongly finite logics. Fund. Inform.,

8, 333–351.

Suchoń, W.
[1974] La méthode de Smullyan de construire le calcul n-valent de

 Lukasiewicz avec implication et négation. Rep. Math. Logic, 2,
37–42.

Surma, S. J., A. Wroński, and S. Zachorowski.
[1975] On Jaśkowski-type semantics for the intuitionistic propositional

logic. Studia Logica, 34, 145–148.

bibliography 95

Surma, S. J.
[1973] Jaśkowski’s matrix criterion for the intuitionistic propositional

calculus. In Studies in the History of Mathematical Logic, S. J.
Surma, editor, 87–121. Wroclaw.

[1977] An algorithm for axiomatizing every finite logic. In Computer
Science and Multiple-valued Logic: Theory and Applications, D. C.
Rine, editor, 137–143. North-Holland, Amsterdam.

Takahashi, M.
[1967a] Many-valued logics of extended Gentzen style I. Sci. Rep. Tokyo

Kyoiku Daigaku Sect A, 9, 271.
[1967b] A proof of cut-elimination in simple type theory. J. Math. Soc.

Japan, 19, 399–410.
[1970] Many-valued logics of extended Gentzen style II. J. Symbolic

Logic, 35, 493–528.

Takeuti, G.
[1987] Proof Theory. Studies in Logic 81. North-Holland, Amsterdam,

2nd edition.

Troelstra, A. S.
[1992] Lectures on Linear Logic. CSLI Lecture Notes 29. CSLI,

Standford, CA.

Ungar, A. M.
[1992] Normalization, Cut-Elimination and the Theory of Proofs. CSLI

Lecture Notes 28. CSLI, Stanford, CA.

Urquhart, A.
[1981] Decidability and the finite model property. J. Philos. Logic, 10,

367–370.
[1986] Many-valued logic. In Handbook of Philosophical Logic, D. M.

Gabbay and F. Guenther, editors, volume 3, 71–116. Reidel,
Dordrecht.

van Heijenoort, J., editor.
[1967] From Frege to Gödel. A Source Book in Mathematical Logic,

1879–1931. Harvard University Press, Cambridge, MA.

White, R. B.
[1980] Natural deduction in the Lukasiewicz logics. In Proc. 10th

International Symposium on Multiple-valued Logic, 226–232.

Zinov’ev, A. A.
[1963] Philosophical Problems of Many-valued Logic. Reidel, Dordrecht.

Zucker, J.
[1974] The correspondence between cut-elimination and normalization I.

Ann. Math. Logic, 7, 1–112.

	Preface
	Basic Concepts
	Languages and Formulas
	Substitutions and Unification
	Semantics of First Order Logics
	Signed Formula Expressions
	Partial Normal Forms
	Bounds for Partial Normal Forms
	Induced Quantifiers

	Resolution
	Introduction
	Clauses and Herbrand Semantics
	Clause Translation Calculi
	Semantic Trees and Herbrand's Theorem
	Soundness and Completeness
	Negative Resolution

	Sequent Calculus
	Introduction
	Semantics of Sequents
	Construction of Sequent Calculi
	Equivalent Formulations of Sequent Calculi
	The Cut-elimination Theorem for PL
	The Cut-elimination Theorem for NL
	Analytical Properties of PL
	Interpolation

	Natural Deduction
	Introduction
	Natural Deduction Systems
	Normal Derivations

	Approximating Propositional Logics
	Introduction
	Propositional Logics
	Singular Approximations
	Sequential Approximations

	Bibliography

