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We are grateful to the many readers who reported typos, errors, and raised

questions and provided suggestions for improvement, especially Yong Cheng,

Alberto Naibo, Pierre Wagner, James Walsh, and David Waszek.

Preface

• p. viii, l. −13: add footnote to “simple induction on N” reading: “Here,

we mean inductive reasoning on the natural numbers; we will later (in

section 2.7) distinguish between two forms thereof, successor induction

and strong induction.”

• p. ix, l. 9. “other elements” → “basic elements”

• p. ix, l. 19: “specific examples” → “specific cases”

• p. xi. Add to references in section 8:

Arai, Toshiyasu. 2020. Ordinal Analysis with an Introduction to
Proof Theory. Logic in Asia: Studia Logica Library. Singapore:

Springer. DOI: 10.1007/978-981-15-6459-8.

Chapter 1

• p. 1, 1st para: Replace

While reflection on mathematical proof goes as far back as the

time of the ancient Greeks, it reached the late nineteenth century

with the detailed formalization of mathematical proofs given

first by Frege and Peano and later by Russell and Whitehead,

and others. A mathematical analysis of proofs considered as

mathematical objects only truly began with David Hilbert and

his school.

by

Reflection on mathematical proof goes as far back as the time

of the ancient Greeks and it reached the late nineteenth century

with the detailed formalization of mathematical proofs given

first by Frege and Peano and later by Russell and Whitehead,
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and others. However, the mathematical analysis of proofs

considered as mathematical objects in their own right only

truly began with David Hilbert and his school.

• p. 1, 2nd para, l. 8–9: “having its intended meaning” → “referring to”; l.

9–10: “a set of pairs” → “as a set of pairs”

• p. 3, 1st full para, l. 6: “the positive part” → “the second (and more

positive) part”

• p. 3, fn. 3, l. 2: “of the domain” → “in the domain”

• p. 3, fn. 3, l. 5: “obtained as” → “obtained by taking”; fn. 3, l. −2: “that

contain” → “that contains”

• p. 4, l. 6: “bais” → “basis”

• p. 4, fn 6, l. 2: “have a meaning associated to their use” → “rest on the

meaning of the signs”

• p. 7, l. −4: “or follows from the one, two, or three formulas immediately

above it in the tree by a rule of inference” → “is licensed by a rule of

inference using the one, two, or three formulas above it”

• p. 10, l. 5: “finitist” → “finitary”

• p. 11, last para, l. 2: “proof theory is” → “proof theory is found in”

Chapter 2

• p. 13, 1st para, l. −5: “system” → “systems”; 1st para, l. −2: “showing”

→ “proving”

• p. 14, 1st para, l. 2: “a class” → “a class (or set)”; l. 5: “clause” → “clause

or clauses”; l. −1: “clause(s)” → “clause (or clauses)”

• p. 14, 2nd para, l. −3: “The extremal clause would ensure that we only

take the smallest class containing Frege’s father and mother and that is

closed under the functions mother(𝑥) and father(𝑥)” → “The extremal

clause guarantees that we only take the smallest class containing Frege’s

mother and father and that is closed under the functions mother(𝑥) and

father(𝑥)”

• p. 14, 3rd para, l. 2: “set” → “class”

• p. 15, 2nd para, l. 4: “collection” → “class”

• p. 15, 2nd para, l. −7: “inductive clauses” → “inductive clause”
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• p. 17, 3rd para, l. 1: “every formula” → “every non-atomic formula”

• p. 18: Definition 2.5: Delete clause (3).

• p. 18, l. −1 to p. 19, l. 2: “Each calculus is stronger than the previous

one(s), and it is obtained by adding more powerful assumptions to its

predecessor.” → “Each calculus is given by a list of axioms and inference

rules. The inference rules are common to all three systems. The axioms

of our systems are obtained from previous ones by adding additional

axioms, making J0 stronger than M0, and K0 stronger than J0.”

• p. 19, Section 2.4.1, 1st para: Delete

• p. 19, Section 2.4.1, 2nd para, l. 1: “We will first present the systems in

a purely formal way” → “We will first present the systems in a purely

formal way by listing their axioms.”

• p. 19, after list of axioms: “givethe” → “reproduce the”

• p. 19, just before section 2.4.2: insert:

Remark. The axioms, as you may have noticed, are not strictly

speaking formulas of the propositional language, but contain

metavariables (cf. Remark on p. 14). They are axiom schemas,

each describing its infinitely many instances. For example, any

formula that has the form 𝐴 ⊃ (𝐴 ∧ 𝐴) counts as an axiom of

type PL1. It is understood that every formula of this form

counts as an axiom, such as 𝑝1 ⊃ (𝑝1 ∧ 𝑝1), ¬(𝑝1 ∨ 𝑝2) ⊃ (¬(𝑝1 ∨
𝑝2) ∧ ¬(𝑝1 ∨ 𝑝2)), etc. We do this to avoid the need to include

a substitution rule (which is what Gentzen and Heyting did).

In what follows, for simplicity, we will not always carefully

distinguish between the schemas and their instances and let

context disambiguate whether we mean the schema or its

instances.

• p. 20, 4th para, l. 1: Delete: “But in general we will prove schematic

theorems that go proxy for an infinite number of proofs of their instances.”

• p. 20: remove turnstiles in the displayed derivation

• p. 20, after the derivation, add: “Thus, the formula in line 11 is a theorem.

We record this fact by writing ⊢ 𝑝1 ⊃ (𝑝2 ∨ 𝑝1).”

• p. 20, fn. 9: Delete

• p. 21, 1st para, l. −4: “furmula” → “formula”

• p. 21, 1st para, l. −2: Insert comma: “𝑝1 ⊃ (𝑝2 ∨ 𝑝1), is the end-formula”
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• p. 21, 2nd para, l. 2: “axiom” → “axiom schema”; l. 3: “axiom” →
“schema”; l. 4: “We note which axiom a formula is an instance of on the

right” → “To the right of each line, we note the axiom schema of which

the formula on that line is an instance”

• p. 21 “The first thing. . . ” to p. 22 just before “Note that since” Replace

with:

The formulas in our example derivation involve the propositional variables

𝑝1 and 𝑝2. If we uniformly replace 𝑝1 and 𝑝2 in our derivation by arbitrary

formulas 𝐶 and 𝐷, respectively, we still have a correct derivation. This is

because such a uniform substitution turns axioms into axioms, and valid

applications of mp into valid applications of mp. On line 1, 𝑝1 ⊃ (𝑝1 ∨ 𝑝2)
is an instance of schema PL7, but any formula of the form 𝐶 ⊃ (𝐶 ∨ 𝐷) is

also an instance of schema PL7. The result of replacing 𝑝1 and 𝑝2 by 𝐶

and 𝐷 on line 2, the formula

[𝐶 ⊃ (𝐶 ∨ 𝐷)] ⊃ [((𝐶 ∨ 𝐷) ⊃ (𝐷 ∨ 𝐶)) ⊃ (𝐶 ⊃ (𝐶 ∨ 𝐷))],

is also an instance of 𝐵 ⊃ (𝐴 ⊃ 𝐵), so line 2 will still be an axiom because it

is an instance of schema PL5. If we now abbreviate 𝐶 ⊃ (𝐶 ∨𝐷) by 𝐴, and

((𝐶 ∨𝐷) ⊃ (𝐷 ∨ 𝐶)) ⊃ (𝐶 ⊃ (𝐶 ∨𝐷)) by 𝐵, we see that lines 1 and 2 are of

the forms 𝐴 and 𝐴 ⊃ 𝐵, respectively, so line 3 follows from 1 and 2 by mp.

For this reason, we can generally write our derivations with schematic

letters rather than propositional variables. Our first derivation would

then turn into a schematic proof of 𝐶 ⊃ (𝐷∨𝐶) which shows that not only

is 𝑝1 ⊃ (𝑝2 ∨ 𝑝1) a theorem, but any formula of the form 𝐶 ⊃ (𝐷 ∨ 𝐶) is.

In practice we will not actually write out complete derivations, but rather

record how derivations will be constructed from derivations we’ve already

given, making use of mp and what we’ll call derived rules. Consider the

first three lines of our derivation, where we abbreviate 𝐶 ⊃ (𝐶 ∨ 𝐷) by 𝐸

and (𝐶 ∨ 𝐷) ⊃ (𝐷 ∨ 𝐶) by 𝐹. We then have:

1. 𝐸 (axiom PL7)

2. 𝐸 ⊃ (𝐹 ⊃ 𝐸) (axiom PL5)

3. 𝐹 ⊃ 𝐸 (mp 1, 2)

In our example, line 1 is an instance of an axiom schema, but it need not

be: If 𝐸 is any theorem, we can use a derivation with 𝐸 as its end-formula,

then add lines 2 and 3, and obtain a derivation of 𝐹 ⊃ 𝐸, for any formula 𝐹.

We can record this as follows:

1. ⊢ 𝐸 (hypothesis)

2. ⊢ 𝐸 ⊃ (𝐹 ⊃ 𝐸) (axiom PL5)

3. ⊢ 𝐹 ⊃ 𝐸 (mp 1, 2)
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Line 1 now is not an axiom, but the result of a derivation, i.e., a theorem.

We indicate this by prefixing each line with the derivability symbol ⊢. We

have shown that if 𝐸 is a theorem, then 𝐹 ⊃ 𝐸 also is a theorem. We call

this a schematic (meta)derivation.

We can use the first 9 lines of our derivation to prove something more:

1. ⊢ 𝐸 (hypothesis)

2. ⊢ 𝐸 ⊃ (𝐹 ⊃ 𝐸) (axiom PL5)

3. ⊢ 𝐹 ⊃ 𝐸 (mp 1, 2)

4. ⊢ (𝐹 ⊃ 𝐸) ⊃ [(𝐹 ∧ 𝐹) ⊃ (𝐸 ∧ 𝐹)] (axiom PL3)

5. ⊢ (𝐹 ∧ 𝐹) ⊃ (𝐸 ∧ 𝐹) (mp 3, 4)

6. ⊢ 𝐹 ⊃ (𝐹 ∧ 𝐹) (axiom PL1)

7. ⊢ 𝐹 (hypothesis)

8. ⊢ 𝐹 ∧ 𝐹 (mp 6, 7)

9. ⊢ 𝐸 ∧ 𝐹 (mp 5, 8)

This schematic derivation shows that if 𝐸 and 𝐹 are both theorems, so

is 𝐸 ∧ 𝐹, or for short: If ⊢M0
𝐸 and ⊢M0

𝐹, then ⊢M0
𝐸 ∧ 𝐹. This is our first

derived rule:

∧intro: If ⊢M0
𝐴 and ⊢M0

𝐵, then ⊢M0
𝐴 ∧ 𝐵.

We will be able to appeal to this rule to show in M0 (and in the other

calculi as well), that if we have derived the formulas 𝐴 and 𝐵, we can

derive 𝐴 ∧ 𝐵 as well.

In our derivations we will often need to make use of the following strategy.

Suppose we have that ⊢M0
𝐴 ⊃ 𝐵 and ⊢M0

𝐵 ⊃ 𝐶. Intuitively, it should

be possible to prove that ⊢M0
𝐴 ⊃ 𝐶 as well. But modus ponens is our

only rule, and does not allow us to make this inference directly. But we

can now make use of our derived rule ∧intro, and provide the following

schematic derivation:

1. ⊢ 𝐴 ⊃ 𝐵 (hypothesis)

2. ⊢ 𝐵 ⊃ 𝐶 (hypothesis)

3. ⊢ (𝐴 ⊃ 𝐵) ∧ (𝐵 ⊃ 𝐶) (∧intro 1, 2)

4. ⊢ [(𝐴 ⊃ 𝐵) ∧ (𝐵 ⊃ 𝐶)] ⊃ (𝐴 ⊃ 𝐶) (axiom PL4)

5. ⊢ 𝐴 ⊃ 𝐶 (mp 3, 4)

We can think of this schematic derivation as establishing the property of

transitivity for ⊃. It is our second derived rule:

⊃trans: If ⊢M0
𝐴 ⊃ 𝐵 and ⊢M0

𝐵 ⊃ 𝐶, then ⊢M0
𝐴 ⊃ 𝐶.

• p. 23, 1st para, l. 6: “schematic routine derivations”→ “routine schematic

derivations”; l. −6: “result” → “results”
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• p. 25, 3rd para, l. 3: “provable (in the appropriate system)” → “provable
(in the appropriate system) in the sense of Definition 2.6”

• p. 25, item (2) in list: “can also be proved” → “can also be derived”

• p. 26, Section 2.7, 2nd para, l. −4: “is either even or odd” → “is even or

odd”

• p. 28, l. −9: “Suppose the proof of the inductive step involves just one

𝑚1 < 𝑛.” → “Suppose that in the proof of the inductive step, the proof of

𝑃(𝑛) only rests on the hypothesis 𝑃(𝑚1) for a single 𝑚1 < 𝑛.”

• p. 29, 2nd para, l. 2: “other kinds of objects” → “other kinds of objects

that involve also non-arithmetical notions (for instance, syntactic notions

such as formulas, derivations, etc.)”

• p. 29, 2nd para, l. 6; 3rd para, l. 3; 4th para, l. 1; 5th para, l. 1, l. 2; 6th

para, l. 1, l. 2 : “in stage” → “at stage”; 2nd para, l. 7: “in the” → “at

the”; 6th para, l. 4: “in some stage stage” → “at some stage”

• p. 30, Problem 2.15, (2) of second definition: “except when 𝑘1 and 𝑘2 are

both 0” → “except when 𝑘1 and 𝑘2 are both 0, in which case it is 0”

• p. 32, delete period at end of third displayed formula (l. 12)

• p. 32, replace

One example will be sufficient to show how much easier it is

now to prove conditional theorems. Suppose we want to prove

[𝐴 ∧ ((𝐴 ∧ 𝐵) ⊃ 𝐶)] ⊃ (𝐵 ⊃ 𝐶)

Assume we have reached

{𝐴 ∧ ((𝐴 ∧ 𝐵) ⊃ 𝐶)} ∪ {𝐵} ⊢ 𝐶

by means of the following derivation:

by

Suppose we want to prove

[𝐴 ∧ ((𝐴 ∧ 𝐵) ⊃ 𝐶)] ⊃ (𝐵 ⊃ 𝐶)

First we establish that

{𝐴 ∧ ((𝐴 ∧ 𝐵) ⊃ 𝐶)} ∪ {𝐵} ⊢ 𝐶

by means of the following strategy:
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• p. 33, replace first paragraph with:

Here we extend our previous convention for recording facts about deriv-

ability (“schematic derivations”) to derivations from assumptions. Lines

1 and 2 are not theorems, but assumptions to be used later. For this

reason, they are not prefixed by ⊢. Line 3 is a theorem. Line 4 records that

from the assumption on line 1 we can derive 𝐴, i.e., there is a derivation

that shows {𝐴 ∧ ((𝐴 ∧ 𝐵) ⊃ 𝐶} ⊢ 𝐴.

• p. 34, 1st full para, l. 2–3: “initial nodes” → “topmost nodes (leaves)”

• p. 34, 1st full para, l. 3: “derivations” → “derivation”

• p. 34, 2nd para, l. 2: “the” → “a”

• p. 34, 3rd full para, l. 1: “need to single out by a different node the

repeated use of 𝐴 ⊃ 𝐵” → “repeated use of 𝐴 ⊃ 𝐵 in two different nodes”

• p. 35, 2nd para, l. 2: “when” → “where”

• p. 35, 2nd para, l. 3; l. 5: “premises” → “assumptions”

• p. 36, 3rd full para, l. 3: “the assumption 𝐴 leads to a contradiction” →
“turns a construction of 𝐴 into a construction of the contradiction”

• p. 37, l. 3: “is equivalent” → “as equivalent”

• p. 37, l. 7: “an effective proof” → “a proof”

• p. 37, 3rd para, l. 4: “the proof” → “a proof”; l. 6: “fact” → “principle”

• p. 38, Section 2.10.2, 1st para, l. 3: “..” → “.”

• p. 40: Replace 2nd display by:

⊢J0
(𝐴 ∨ 𝐵) ⊃ ¬(¬𝐴 ∧ ¬𝐵)

⊢J0
(𝐴 ∧ 𝐵) ⊃ ¬(¬𝐴 ∨ ¬𝐵)

• p. 40, Section 2.11, replace beginning of section (to just before “As a

consequence” at the end of p. 41) with:

We have confidently asserted that ¬𝐴 ⊃ (𝐴 ⊃ 𝐵) cannot be proved in M0

and that ¬¬𝐴 ⊃ 𝐴 cannot be proved in J0. But how do we know that? In

this section we want to explain one of the techniques for proving such

results. The technique is model-theoretic (as opposed to proof-theoretic)

and consists in showing that we can concoct interpretations (or models)

of our axiom systems that verify the axioms and preserve the validity

of the inferential rules but falsify the statement we want to show to

be independent. The basic idea is that we can consider connectives as
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function symbols operating on “truth-values.” These function symbols

output certain values depending on the input value of their arguments

according to a specific table of values.

The systems look very similar to the truth-tables familiar from a first logic

course, except that in many cases, instead of having only two truth-values

(0, 1 or T, F) we might have more than two, and occasionally more than

one truth-value can play the role that T (or F) played for truth-tables.

Let us first prove that ¬𝐴 ⊃ (𝐴 ⊃ 𝐵) and ¬¬𝐴 ⊃ 𝐴 are not derivable in M0.

Consider the following truth-tables for ⊃,∧,∨,¬ where we have only

two truth-values (0, 1) and 0 plays the role of truth.1 (When using the

table for a binary connective, the first argument is given by the leftmost

vertical column and the second argument by the horizontal row at the

top.)

⊃ 0 1

0 0 1

1 0 0

∧ 0 1

0 0 1

1 1 1

∨ 0 1

0 0 0

1 0 1

¬
0 0

1 0

Notice that the interpretation is purely algebraic.2 For instance, it certainly

does not capture our intuition about negation to see that whether the

input is 0 or 1, our table always outputs 0. But that does not matter, as

we are only interested in showing the possibility of an interpretation of

the connectives as functions over truth-values which will show that the

value of the two propositions is “falsity” while the other axioms and their

consequences can only be “true.”

If we assign 0 or 1 to the propositional variables in a formula, the truth-

tables above determine a value (again, either 0 or 1) for the entire formula.

A formula that always takes the value 0 then counts as a tautology. If a

formula is a tautology, so is every substitution instance of it. For instance,

if 𝑝1 ⊃ (𝑝1 ∧ 𝑝1) is a tautology, so is every formula of the form 𝐴 ⊃ (𝐴∧𝐴),
i.e., every instance of schema PL1.

We now show, by induction on the length of proofs, that every formula

provable in M0 is a tautology in this non-standard sense. If we can

show that a formula doesn’t have this property (it takes value 1 for some

assignment), it cannot be derivable in M0. You should verify that all

axioms of M0 always have value 0 according to the above tables, and

further, that modus ponens always lead from premises with values 0 to

a conclusion with value 0, i.e., if 𝐴 and 𝐴 ⊃ 𝐵 have value 0, 𝐵 must also

have value 0.

Now consider the instances ¬𝑝1 ⊃ (𝑝1 ⊃ 𝑝2) and ¬¬𝑝1 ⊃ 𝑝1 of our two

formulas. They are not tautologies; by a suitable assignment of 0 and 1

1
The assignment of the numbers 0 as “true” and 1 (and later also 2) as “false” is purely

conventional; often 1 is used as “true” and 0 as “false.”

2
In this case, all the connectives except negation are interpreted as in classical logic.
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to 𝑝1 and 𝑝2 we can obtain the value 1. For the first formula, assign 0

to 𝑝1 and 1 to 𝑝2. With these values assigned to 𝑝1 and 𝑝2, we have that

𝑝1 ⊃ 𝑝2 has value 1, ¬𝑝1 has value 0, and ¬𝑝1 ⊃ (𝑝1 ⊃ 𝑝2) has value 1. To

show the possible “falsity” of the second formula, instead assign 1 to 𝑝1.

Then ¬¬𝑝1 takes the value 0 and so ¬¬𝑝1 ⊃ 𝑝1 has value 1. So, neither

¬𝑝1 ⊃ (𝑝1 ⊃ 𝑝2) nor ¬¬𝑝1 ⊃ 𝑝1 can have a derivation in M0. Consequently,

there can be no schematic derivation of ¬𝐴 ⊃ (𝐴 ⊃ 𝐵) or of ¬¬𝐴 ⊃ 𝐴.3

• p. 42. Replace Problem 2.21 and the paragraph following by:

Problem 2.21 Let M+
0

be the calculus obtained from M0 by adding the

axiom schema 𝐴 ∨ ¬𝐴. Using the first set of tables above, show that

⊬M+
0

¬¬𝐴 ⊃ 𝐴.

In the previous section we showed that ⊢K0
𝐴 ∨ ¬𝐴. This proof required

axiom schema PL12 (¬¬𝐴 ⊃ 𝐴), but did not use schema PL11, so in fact

𝐴 ∨ ¬𝐴 is already provable in the calculus resulting from M0 by adding

¬¬𝐴 ⊃ 𝐴 as an axiom schema. The preceding problem thus shows that

in a sense schema ¬¬𝐴 ⊃ 𝐴 is stronger than 𝐴 ∨ ¬𝐴.

• p. 45, l. 2: “variables, and” → “variables, 𝑓 , 𝑔, ℎ as metavariables for

function symbols, and”

• p. 45, l. 3: add at end of para: “In addition to 𝐴, 𝐵, 𝐶, etc., as metavariables

for formulas (see definition below), in the following we will also use 𝐹,

𝐺, etc., and 𝐹(𝑎), 𝐺(𝑎), etc., to vary over sentences and formulas with

one free variable. Occasionally we will also use 𝑃, 𝑄 with or without

variables to also stand for formulas.”

• p. 45, Definition 2.30, (2): “Inductive clause” → “Inductive clauses”

• p. 48, 3rd para, l. 4: “in the axioms by formulas”→ “in the axiom schemas

by schematic formulas”; l. 5: “For instance, we have ⊢M1
𝐹(𝑎)⊃(𝐹(𝑎)∧𝐹(𝑎))

by PL1.” → “For instance, we have ⊢M1
𝐹(𝑎) ⊃ (𝐹(𝑎) ∧ 𝐹(𝑎)), for any

formula 𝐹(𝑎) with a free variable 𝑎, by PL1.”

• p. 49, just before Definition 2.36: “premises 𝛤” → “assumptions 𝛤”

• p. 50, first para, l. 2–5: “Assume 𝐵 ∈ 𝛤 and let 𝐴1 . . . 𝐴𝑛 be a derivation

from 𝛤 with the justifications for each step. 𝐴𝑖 depends on 𝐵 if, and only if,

𝐵 is the formula 𝐴𝑖 and the justification for 𝐵 is that it belongs to 𝛤; or,

there are 𝐴𝑘 , 𝐴ℓ with 𝑘, ℓ < 𝑖 such that 𝐴𝑖 is justified by an application

of modus ponens, qr1 or qr2 applied to 𝐴𝑘 , 𝐴ℓ and at least one of 𝐴𝑘 , 𝐴ℓ

depends on 𝐵.” →
3
Note that for some instances there may well be derivations; we just can’t have derivations for

all instances. E.g., ¬¬(𝑝1 ⊃ 𝑝1) ⊃ (𝑝1 ⊃ 𝑝1) is derivable, since 𝑝1 ⊃ 𝑝1 is a theorem, and whenever 𝐴
is a theorem so is 𝐵 ⊃ 𝐴 for any formula 𝐵.
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Assume 𝐵 ∈ 𝛤 and let 𝐴1 . . . 𝐴𝑛 be a derivation from 𝛤 with the

justifications for each step given. 𝐴𝑖 depends on 𝐵 if, and only if,

one of the following holds:

1. 𝐵 and 𝐴𝑖 are the same formula, and the justification for 𝐴𝑖

is that it (i.e., 𝐵) belongs to 𝛤;

2. there are 𝐴𝑘 , 𝐴ℓ with 𝑘, ℓ < 𝑖 such that 𝐴𝑖 is justified by

an application of modus ponens and at least one of 𝐴𝑘 , 𝐴ℓ

depends on 𝐵;

3. there is an 𝐴𝑘 with 𝑘 < 𝑖 such that 𝐴𝑖 is justified by an

application of qr1 or qr2 applied to 𝐴𝑘 and 𝐴𝑘 depends

on 𝐵.

• p. 50, proof of Lemma 2.37, l. 3: “𝐴 can only be an axiom or an element

of 𝛤 which is not 𝐵” → “𝐴 can only be an axiom or an element of 𝛤 which

is not 𝐵 (otherwise it would depend on 𝐵 by (1) above, contrary to the

assumption that 𝐴 does not depend on 𝐵)”

• p. 50, proof of Lemma 2.37, l. −2: “corresponding rules” → “correspond-

ing rule”

• p. 51, proof of Theorem 2.38, inductive step, l. 1: Replace

We have four cases. 𝐴𝑛 could be 𝐵; 𝐴𝑛 could be in 𝛤 and

different from 𝐵; 𝐴𝑛 could be an axiom; 𝐴𝑛 could be obtained

from previous formulas 𝐴𝑘 , 𝐴ℓ (where 𝑘, ℓ < 𝑛) by mp, qr1,

or qr2. The first three cases are dealt with as in the case for

𝑛 = 1. The last case contains three sub-cases depending on the

rule of inference used to derive 𝐴𝑛 . We will treat mp and qr1,

leaving qr2 as an exercise.”

by

We have six cases. 𝐴𝑛 could be 𝐵; 𝐴𝑛 could be in 𝛤 and different

from 𝐵; 𝐴𝑛 could be an axiom; 𝐴𝑛 could be obtained from

previous formulas 𝐴𝑘 , 𝐴ℓ (where 𝑘, ℓ < 𝑛) by mp; 𝐴𝑛 could be

obtained from a previous formula 𝐴𝑘 (where 𝑘 < 𝑛) by qr1; or

it could be obtained from some 𝐴𝑘 by qr2. The first three cases

are dealt with as in the case for 𝑛 = 1. Of the last three cases

will treat mp and qr1, leaving qr2 as an exercise.

• p. 51, proof of Theorem 2.38, second para: “Let us assume 𝛤, 𝐵 ⊢ 𝐴𝑛 is

obtained from 𝛤, 𝐵 ⊢ 𝐴𝑘 and 𝛤, 𝐵 ⊢ 𝐴ℓ where 𝐴𝑘 has the form 𝐴ℓ ⊃ 𝐴𝑛

and where each derivation satisfies the hypothesis of the theorem.” →

Let us assume that 𝐴𝑛 is justified by mp applied to 𝐴𝑘 and 𝐴ℓ ,

where 𝐴𝑘 has the form 𝐴ℓ ⊃ 𝐴𝑛 . The derivations ending in
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𝐴𝑘 and 𝐴ℓ justify, respectively, that 𝛤, 𝐵 ⊢ 𝐴𝑘 and 𝛤, 𝐵 ⊢ 𝐴ℓ .

Clearly, each derivation satisfies the hypothesis of the theorem,

as any qr1 and qr2 inferences in them are also inferences in the

derivation of 𝐴 = 𝐴𝑛 from 𝛤, 𝐵 itself.

• p. 52, l. 1: “Assume now that 𝛤, 𝐵 ⊢ 𝐴𝑛 where 𝐴𝑛 is obtained by qr1 from

𝛤, 𝐵 ⊢ 𝐴ℓ , the conclusion 𝐴ℓ has the form 𝐷 ⊃ 𝐶(𝑎), and 𝐴𝑛 has the form

𝐷 ⊃ ∀𝑥 𝐶(𝑥).” →

Assume now that 𝐴𝑛 is justified by qr1 applied to 𝐴ℓ . The

derivation ending in 𝐴ℓ shows that 𝛤, 𝐵 ⊢ 𝐴ℓ , and again this

derivation satisfies the assumption of the theorem. The conclu-

sion 𝐴ℓ has the form 𝐷⊃𝐶(𝑎), and 𝐴𝑛 has the form 𝐷⊃∀𝑥 𝐶(𝑥).

• p. 52, l. 3: “𝛤, 𝐵 ⊢ 𝐴𝑛” → “𝐴𝑛”

• p. 53, 1st para, l. 5: “sequent calculi” → “the sequent calculus”

• p. 53, 4th para, l. 1: “sets in which the” → “sets for which”

• p. 54, 2nd full para, l. 2: “this chapter” → “this section”; 4th para, l. 1:

“no one doubted” → “virtually no one thought”; “finitistically and” →
“finitarily or”

• p. 55, l. 5: “drawn” → “generally drawn”

• p. 55, section 2.15.2, 1st para, l. −3: “constant” → “individual constant”

• p. 56, Definition 2.42, (2): “Inductive clause” → “Inductive clauses”

• p. 57, first displayed formula: “∃𝑥 𝐹(𝑥) ⊃ ∃𝑥∀𝑦(𝑦 < 𝑥 ⊃ ¬𝐹(𝑦))” →
“∃𝑥 𝐹(𝑥) ⊃ ∃𝑥(𝐹(𝑥) ∧ ∀𝑦(𝑦 < 𝑥 ⊃ ¬𝐹(𝑦)))”

• p. 58, l. −1: “J1” → “PA𝐼”

• p. 59, Definition 2.46: Add footnote: “The translation of Definition 2.46

and the analog of Theorem 2.48 also works for formulas of predicate logic,

not just formulas and proofs in arithmetic. In that case it is necessary to

define 𝐺∗ = ¬¬𝐺 for 𝐺 atomic.”

• p. 62, derivation line 6: “¬∀𝑥 𝐵∗(𝑥) ⊃ ¬¬𝐴∗
” → “¬∀𝑥 ¬𝐵∗(𝑥) ⊃ ¬¬𝐴∗

”

• p. 62, l. −3: “derivation of” → “derivation”; l. −1: “is” → “is a”

• p. 63, l. −3 “¬(0 = 0)” → “¬0 = 0”

• p. 64, l. 1: “it is inconsistent” → “𝑇 is inconsistent”
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Chapter 3

• p. 69, l. −2: “sub-proof(s)” → “sub-deduction(s)”

• p. 70, first full para, l. −1: “given in Table 3.1” → “is given in Table 3.1

on p. 88.”

• p. 75, first para, l. −3: “new” → “new application of the”; l. −2:

“(lowermost)” → “(lowermost) application of the”

• p. 75, 2nd para, l. −5: “deductions” → “deduction”

• p. 76, 1st para, l. −1: “labelled
1
” → “labelled 1”

• p. 77, 1st para, l. 1, 2, 4: “sub-proof” → “sub-deduction”

• p. 77, Section 3.2.4, 3rd para, l. 2: “𝐵 ≡ ⊥” → “𝐵 = ⊥”

• p. 78, 1st full para, l. −3: “A simple example” → “For a simple example”

• p. 79, section 3.2.5, 2nd para, l. −1: “A free variable so restricted is called

the eigenvariable of the inference.” → “The indicated free variable 𝑐 which

is so restricted is called the eigenvariable of the inference.”

• p. 82, replace

Of course, not any free variable would be suitable to use for

this purpose: only variables about which we haven’t already

assumed something, i.e., only variables that don’t appear in

the major premise or any open assumptions on which it or the

subsidiary conclusion 𝐶 depends. These rather complicated

preconditions on the use of the variables 𝑐 are expressed in a

restriction on the use of ∃e: Only applications of ∃e are allowed

where the variable 𝑐 does not appear in 𝐶 or in any assumptions

that are open after the application of the inference. This means

in particular that 𝑐 may not be open in an assumption of the

sub-deduction leading to the major premise ∃𝑥 𝐴(𝑥), in any

assumption not of the form 𝐴(𝑐) in the sub-deduction leading

to the minor premise 𝐶, and that all open assumptions of the

form 𝐴(𝑐) in that right sub-deduction must be discharged at

this inference.

by

Of course, not any free variable would be suitable to use for

this purpose: only variables about which we haven’t already

assumed something other than that 𝐴(𝑐) holds. This rather

vague condition on the use of the variable 𝑐 is expressed in a
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restriction on the use of ∃e: Only applications of ∃e are allowed

where the variable 𝑐 does not occur in ∃𝑥 𝐴(𝑥), 𝐶, or in any

assumptions that are open in the sub-deduction ending in the

minor premise 𝐶 other than the assumptions of the form 𝐴(𝑐)
being discharged by the inference.

• p. 82, 1st para, l. −3: Delete “At an application of ∃e, any assumptions

of the form 𝐴(𝑐) which are open in the deduction ending in the minor

premise may be discharged.”

• p. 82, add at the end of the page:

To see what can go wrong if 𝑐 were allowed to occur in an

open assumption other than 𝐴(𝑐) on the right, consider the

deduction

∃𝑥 𝐴(𝑥)
𝐴(𝑐) 1 𝐴(𝑐) ⊃ 𝐶 ⊃e

𝐶
1 ∃e

𝐶

This is a deduction of 𝐶 from the open assumptions ∃𝑥 𝐴(𝑥)
and 𝐴(𝑐) ⊃ 𝐶, but 𝐶 does not follow from ∃𝑥 𝐴(𝑥) and 𝐴(𝑐) ⊃ 𝐶.

Here’s a “deduction” of an invalid formula where the condition

that 𝑐 must not occur in the major premise ∃𝑥 𝐴(𝑥) is violated:

∃𝑥 𝐴(𝑥, 𝑐) 1

𝐴(𝑐, 𝑐) 2

∃i∃𝑥 𝐴(𝑥, 𝑥)
2 ∃e∃𝑥 𝐴(𝑥, 𝑥)

1 ⊃i∃𝑥 𝐴(𝑥, 𝑐) ⊃ ∃𝑥 𝐴(𝑥, 𝑥)

Note that we do not require, as we also don’t in⊃i and∨e, that an

application of∃e must in fact discharge open assumptions of the

form 𝐴(𝑐) on the right. If it does not, however, the application

of ∃e is redundant: we could then deduce the conclusion 𝐶

without its use (and in fact without the major premise ∃𝑥 𝐴(𝑥)),
and with (possibly fewer) open assumptions, using just the

sub-deduction ending in the premise 𝐶.

• p. 88, section 3.4. Label of inference rule on the right in the last display

should read “nd”

• p. 89, replace the last deduction and the three lines below it by:

𝐴 1

1 ¬i¬𝐴, 𝐴 ∨i

𝐴 ∨ ¬𝐴, 𝐴 ∨i

𝐴 ∨ ¬𝐴
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The last ∨i inference results in the set {𝐴∨¬𝐴, 𝐴∨¬𝐴}, which

is identical to {𝐴∨¬𝐴}—if a rule yields as conclusion a formula

already present, the two copies are automatically “contracted”

into one.

• p. 89, section 3.5, 1st para, l. −4: “proof-theoretic” → “Proof-theoretic”

• p. 90, Definition 3.13, inductive clause: “ending in these premises” →
“ending in the premises of the last inference”

• p. 90, last display: The conclusion “𝐵” and the formula “𝐴” on the right

should be aligned at the baseline

• p. 91, l. 3: “premise” → “premise of the original deduction”

• p. 93, l. 2: “(∀𝑥 𝐴(𝑥))[𝑐/𝑎]” → “∀𝑥 𝐴(𝑥)[𝑐/𝑎]”

• p. 95, the ∃e inference in the second display is missing the discharge

label 1:

𝛤1

𝛿1

∃𝑥 𝐴(𝑥)

𝛤2 , 𝐴(𝑐) 1

𝛿2

𝐶
1 ∃e

𝐶

• p. 95, in the proof of Lemma 3.18, replace the beginning of the last

paragraph

Let 𝑑 again be a free variable which is not used as an eigen-

variable in 𝛿′
1

or 𝛿′
2
, which is not in 𝑉 , and which does not

occur in 𝛤1, 𝛤2 or 𝐶. As before, 𝛿′
2
[𝑑/𝑐] is a correct deduction

of 𝐶 from 𝛤2 ∪ {𝐴(𝑑)} (by the eigenvariable condition, 𝑐 does

not occur in 𝐶 or 𝛤2). 𝑑 does not occur in 𝛤1, 𝛤2, or 𝐶. So the

eigenvariable condition for an application of ∃e is satisfied, and

we can take as 𝛿′ the deduction

with:

Let 𝑑 again be a free variable which is not used as an eigenvari-

able in 𝛿′
1

or 𝛿′
2
, which is not in 𝑉 , and which does not occur

in ∃𝑥 𝐴(𝑥), 𝛤1, 𝛤2 or 𝐶. As before, 𝛿′
2
[𝑑/𝑐] is a correct deduction

of 𝐶 from 𝛤2 ∪ {𝐴(𝑑)}: by the eigenvariable condition, 𝑐 does

not occur in 𝐶, 𝛤2, or ∃𝑥 𝐴(𝑥). Replacing 𝑐 by 𝑑 in 𝛿2 leaves

assumptions in 𝛤2 as well as 𝐶 unchanged, and changes all

assumptions of the form 𝐴(𝑐) into 𝐴(𝑑). Consequently, 𝑑 does

not occur in ∃𝑥 𝐴(𝑥), 𝐶, or 𝛤2, and the eigenvariable condition
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for an application of ∃e is satisfied. We can take as 𝛿′ the

deduction

• p. 95, the ∃e inference in the third display is missing the discharge label 1:

𝛤1

𝛿′
1

∃𝑥 𝐴(𝑥)

𝛤2 , 𝐴(𝑑) 1

𝛿′
2
[𝑑/𝑐]

𝐶
1 ∃e

𝐶

• p. 97, 2nd para, l. −2: “deduction” → “proof”; l. −1 “deduction” →
“proof”

• p. 99, below the first display: “size” → “sizes”

• p. 99, below the third display: full stop for comma: “(𝐵 ∧ (𝐵 ⊃ 𝐴)) ⊃ 𝐴,”

→ “(𝐵 ∧ (𝐵 ⊃ 𝐴)) ⊃ 𝐴.”

Chapter 4

• p. 103, l. 2–3: Delete: “However, in general, indirect deductions can be

much shorter than the shortest direct deduction.” (It is repeated below)

• p. 104, l. 1: “to ensure 𝛿1 and 𝛿2 have no discharge labels in common)” →
“to ensure that all discharge labels in the resulting deduction are distinct)”

• p. 105, 1st full para, l. 4: “normal deduction” → “normal deduction

(from 𝛤)”

• p. 107, proof of Proposition 4.2, 1st para, l. −2: “for formulas of any

given complexity” → “which have formulas of a given complexity as the

conclusion”

• p. 108, 109: replace “≡” by “=” (8 times)

• p. 109, l. 3: “𝐵 ≡ 𝐴 ∨ 𝐵” → “𝐵 ≡ 𝐶 ∨ 𝐷”

• p. 109, 2nd full para, l. 2: “following ⊥𝐽” → “including and following

the last ⊥𝐽 inference”

• p. 110, Definition 4.5, after the list: “our last example” → “our last

example (on p. 102)”

• p. 111, 2nd para, l. 5: “atomic cuts” →“atomic cuts”

• p. 112, Problem 4.7, l. 2 and after the displayed deduction: “avoid” →
“eliminate”
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• p. 113, proof of Lemma 4.8: delete first paragraph (“We will assume

. . . labelled 𝑖 in 𝛿2.”)

• p. 113, proof of Lemma 4.8: Replace 4th para:

Now suppose 𝐵 is an open assumption of the form 𝐴 labelled 𝑖.

Since 𝐵 is the only open assumption of 𝛿1, this means 𝐵 and

𝐴 are identical formulas. Then 𝛿1[𝛿2/𝐴𝑖] is 𝛿2, which is then

also a deduction of 𝐵. Its open assumptions are those of 𝛿2, i.e.,

contained in 𝛤1 ∪ 𝛤2. Trivially, 𝐴 is open in 𝛿1[𝛿2/𝐴𝑖] = 𝛿2 only

if it is open in 𝛿2.

by

Now suppose 𝐵 is an open assumption of the form 𝐴 labelled 𝑖.

Since 𝐵 is the only open assumption of 𝛿1, 𝐵 and 𝐴 must be

identical formulas. Hence 𝛿2 is also a deduction of 𝐵. Let 𝛿′
2

be a

deduction resulting from 𝛿2 by renumbering all discharge labels

so that overall in the resulting deduction no two inferences use

the same discharge label. In particular, this ensures that no

assumption of the form 𝐴 in 𝛿′
2

is labelled 𝑖. We let 𝛿1[𝛿2/𝐴𝑖]
be 𝛿′

2
. Its open assumptions are those of 𝛤2, and thus are

contained in 𝛤1 ∪ 𝛤2. Trivially, 𝐴 is open in 𝛿1[𝛿2/𝐴𝑖] = 𝛿′
2

only

if it is open in 𝛿2.

• p. 113–2, proof of Lemma 4.8, inductive step: Replace “𝐼” by “Inf”
throughout (10 times)

• p. 115, l. 2 below the second display: after “rightmost, topmost cuts

first” insert footnote: “The rightmost topmost cut is the cut that appears

furthest to the right of all the cuts such that the deduction contains no

cuts above them. Since of any two cuts, either one is above the other, or

one is further to the right than the other, it is clear that the rightmost,

topmost cut is unique.”

• p. 116, Definition 4.9, l. 2: “rank” → “cut rank”

• p. 117, proof of Theorem 4.10, 3rd para, l. 4: “premise” → “major

premise”

• p. 119, l. 6 below the first display: “the same as that of 𝛿” → “the same

as that of 𝛿1”; l. 9: “are introducted” → “are introduced in 𝛿2”

• p. 120, l. 2 below the first displayed deduction: “cut of degree 2” → “cut

of degree 2 (indicated by a box above)”

• p. 120, l. −4 of the 1st para: “topmost, rightmost”→ “rightmost, topmost”
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• p. 121, l. 4: “topmost cut” → “topmost cut of maximal degree”

• p. 122, Definition 4.13, replace by:

1. Basis clause: If 𝐴 is atomic, 𝐴 is the only sub-formula of 𝐴.

2. Inductive clauses:
a) If 𝐴 is of the form ¬𝐵, the sub-formulas of 𝐴 are 𝐴

itself, ⊥, and the sub-formulas of 𝐵.

b) If 𝐴 is of the form (𝐵 ∧ 𝐶), (𝐵 ∨ 𝐶), or (𝐵 ⊃ 𝐶), then the

sub-formulas of 𝐴 are 𝐴 itself and the sub-formulas of

𝐵 and 𝐶.

c) If 𝐴 is of the form ∃𝑥 𝐵(𝑥) or ∀𝑥 𝐵(𝑥), and 𝐵(𝑥) is

𝐵[𝑥/𝑎], then the sub-formulas of 𝐴 are 𝐴 itself and the

sub-formulas of all formulas 𝐵[𝑡/𝑎], 𝑡 any term.

3. Extremal clause: Nothing else is a sub-formula of 𝐴.

• p. 123, Proposition 4.16, l. 2 and l. 1 of proof: “𝑗 > 𝑖” → “𝑗 ≥ 𝑖”

• p. 124, l. −3 and −2: delete “major” (twice)

• p. 124, l. −1: “by ∧e” → “by ∧e or ∀e”

• p. 129, l. −8, “formulas in the threads” → “formulas on the threads”

• p. 130, l. 1: “In our final example above” → “In our previous example on

p. 128”

• p. 130, section 4.5, 1st para, l. 2–3: “they can however be more complex

in that they are much longer” → “they are in general much longer”; second

para, l. 3: “2
𝑛
” → “2

𝑛−1
”

• p. 131, replace the 4th displayed deduction by

𝛿

(𝐵 ⊃ 𝐶) ⊃ ((𝐶 ⊃ 𝐷) ⊃ (𝐵 ⊃ 𝐷))

𝛿1

𝐵 ⊃ 𝐶 ⊃e(𝐶 ⊃ 𝐷) ⊃ (𝐵 ⊃ 𝐷)

𝛿2

𝐶 ⊃ 𝐷 ⊃e

𝐵 ⊃ 𝐷

• p. 132, section 4.6, 1st para, l. 5: “For instance, instead of” → “For

instance, you can replace”; “deduce” → “by” in the following display;

delete “instead.” after display

• p. 133, 1st full para after Definition 4.26, l. −3: move closing parenthesis

to end of sentence.
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• p. 134, proof of proposition 4.28, l. 1: “cuts” → “cut”

• p. 134, para below the proof of Proposition 4.28, l. −4: “𝐴 ∧ 𝐵𝑏” →
“𝐴 ∧ 𝐶𝑏”

• p. 136, l. 12: “discharged, (See Section 3.2.3 for an example.)” →
“discharged (see Section 3.2.3 for an example).”

• p. 136, after first display: replace “premise” by “disjunct”

• p. 138, first displayed deduction: “𝐶” → “𝐷”

• p. 147, l. 1: “𝑏, 𝑑, 𝑓 , ℎ, and 𝑗” → “𝐴 ⊃ 𝐶𝑏 , 𝐴 ⊃ 𝐶𝑑, 𝐶 𝑓 , 𝐵𝑖 , and 𝐴 𝑗”

• p. 148, Proposition 4.36, (3): “𝑚 < 𝑖 < 𝑘” → “𝑚 < 𝑖 < ℓ”

• p. 151, Definition 4.39, (1): “Base” → “Basis”

• p. 152, proof of Lemma 4.41, l. −2: “But all formulas between 𝐴𝑘 and the

end-formula of 𝛿 lie on paths of order < 𝑜.” → “But all formulas occuring

in 𝛿 between 𝐴𝑘 and the end-formula lie on paths of order < 𝑜.”

• p. 153, l. 7: “of a path” → “of a formula on a path”

• p. 154, Corollary 4.47 should read: “NJ does not prove all instances of

𝐴 ∨ ¬𝐴.”

• p. 154, Corollary 4.49 should read: “NM does not prove all instances of

(𝐴 ∧ ¬𝐴) ⊃ 𝐵.”

• p. 159, l. 1: “cut segment” → “segment”

• p. 159, l. 5: “any proof” → “any proof 𝛿”

• p. 159, l. −4: “subdeduction” → “sub-deduction”

• p. 160, l. 1: “𝑠(𝛿) = 0” → “𝑠(𝛿) = 1 and 𝑠(𝛿∗) = 0”

• p. 160, l. 3: “𝑟(𝛿∗) = 1” → “𝑟(𝛿) = 1”

• p. 167, l. 8: “is an i-rule” → “is the conclusion of an i-rule”

• p. 167, l. −1: Add to the end of the last paragraph: “We leave the

verification of this as an exercise.”
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Chapter 5

• Throughout chapter 5 and 6: in inductive definitions, we number inductive

clauses together with basis and extremal clause. For uniformity with

other chapters, introduce subsidiary numbering for the inductive clauses.

(Definition 5.4, Theorem 5.28, Theorem 5.31, Definition 6.29)

• p. 168, 1st para, l. 3: “the notion of sequents” → “the notion of sequent”

• p. 168, 1st para, l. 9: “number” → “finite number”

• p. 169, replace “The intuitive meaning of a sequent . . . ” to the end of the

page with:

Assuming we have a semantics that makes formulas true

or false, we can give an intuitive interpretation of when a

sequent holds or doesn’t: 𝛤 ⇒ 𝛥 holds if, and only if, one of

the formulas 𝐴𝑖 in 𝛤 is false, or one of the formulas 𝐵 𝑗 in 𝛥 is

true. In other words, it holds if, and only if, whenever all the

formulas in 𝛤 are true, then at least one of the formulas in 𝛥
is true. If 𝛤 is empty, it holds if, and only if, at least one of the

𝐵 𝑗 is true; if 𝛥 is empty, when at least one of the 𝐴𝑖 is false.

Consequently, the empty sequent ⇒ never holds.

We can translate a sequent 𝐴1 , . . . , 𝐴𝑛 ⇒ 𝐵1 , . . . , 𝐵𝑛 into a

single formula that is true if, and only if, the sequent holds as

follows (this is the translation we would use to show that the

sequent calculus is equivalent to axiomatic derivations, as we

did for natural deduction in Section 3.7):

1. 𝑛 ≠ 0, 𝑚 ≠ 0: 𝛤 ⇒ 𝛥 translates to

(𝐴1 ∧ · · · ∧ 𝐴𝑛) ⊃ (𝐵1 ∨ · · · ∨ 𝐵𝑚).

2. 𝑛 = 0, 𝑚 ≠ 0: 𝛤 is empty, and ⇒ 𝛥 translates to

𝐵1 ∨ · · · ∨ 𝐵𝑚

3. 𝑛 ≠ 0, 𝑚 = 0: 𝛥 is empty, and 𝛤 ⇒ translates to

¬(𝐴1 ∧ · · · ∧ 𝐴𝑛).

4. 𝑛 = 0, 𝑚 = 0: ⇒ , i.e., the empty sequent, translates

to the contradiction ⊥ (see Section 2.10.1).

• p. 170: Replace 2nd full para

As will become clear after we present the axioms and rules,

each line of a derivation must be valid and thus sequent systems

are more like axiomatic ones than natural deduction systems.
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by

Proofs in LK are more like axiomatic derivations (considered as

trees as in Section 2.7) than they are like deductions in NK. The

initial sequents (axioms) of LK-proofs are like the axioms of

derivations. Axiom sequents of the form 𝐴 ⇒ 𝐴 always hold on

their intuitive interpretation, just like the axioms in axiomatic

derivations are always true: since 𝐴 is either true, in which

case a formula in the succedent is true, or it is false, in which

case a formula in the antecedent is false. Unlike assumptions in

natural deduction, they do not need to be discharged in order

to prove a sequent unconditionally.

• p. 171, section 5.2.4, 1st para, l. 2: “logical operators and quantifiers” →
“logical operators (connectives and quantifiers)”

• p. 173. Delete numbers from paragraphs labelled (1) and (2). Delete

the entire paragraph labelled (3). Add at end of paragraph labelled (1):

“(They are sometimes also called context formulas.)”

• p. 175, Definition 5.7, (2), l. 2: “these” → “its”

• p. 180, l. 7: “a deduction” –> “an NK-deduction”

• p. 180, Problem 5.8, l. 1: “structure” → “structure of”

• p. 184, para after the proof of (a): “critical conditions for quantifiers rules”

→ “eigenvariable conditions of ∃l and ∀r inferences”

• p. 185, l. 1 after first proof: “therefore d ” → “therefore sequent (d)”

• p. 187, Section 5.6, 1st para, l. 1: “logical initial sequents” → “logical

initial sequents, i.e., initial sequents of the form 𝐴 ⇒ 𝐴,”

• p. 188, Section 5.7, 1st para, l. 3: “𝛤′ results from 𝛤” → “𝛤′ results from 𝛤,

and 𝛥′
from 𝛥,”

• p. 189, l. 2: “inferences” → “proofs”

• p. 190, l. 1 after first display: ‘eigenvaraible” → “eigenvariable”

• p. 192, l. 5: “deductions” → “proofs”, “proofs” → “deductions”

• p. 194, last display: “⇒” → “or”

• p. 197, 1st para, l. 2: “𝛤 ⇒ 𝐸” → “𝛤 ⇒ 𝐴”

• p. 197, Proof of Theorem 5.31, l. 1: Replace
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We define a mapping of regular LJ-proofs 𝜋 with end-sequent

𝛤 ⇒ [𝐴] to NJ-deductions 𝐷(𝜋) of 𝐴 (or ⊥, if the succedent of

the end-sequent is empty) with As(𝐷(𝜋)) ⊆ 𝛤 by induction.

by

We define a mapping𝐷 of regular LJ-proofs𝜋 to NJ-deductions𝐷(𝜋)
by induction. We’ll use 𝛤 ⇒ [𝐴] to indicate a sequent where the

succedent may be empty or else contains the single formula 𝐴.

If 𝛤 ⇒ [𝐴] is the end-sequent of 𝜋, then 𝐷(𝜋) is a deduction

of 𝐴 (or of ⊥ if the succedent of the end-sequent is empty) with

As(𝐷(𝜋)) ⊆ 𝛤.

• p. 198, paragraph following the second display, l. 3: “[𝐴] indicates that

𝐴 may occur on the right side of the end-sequent of 𝜋, or the right side

of the sequent may be empty.” → “Recall that [𝐴] indicates that 𝐴 may

occur as the only formula in the succedent of the end-sequent of 𝜋, or the

succedent of the end-sequent may be empty.”

Chapter 6

• p. 203, Theorem 6.3, l. 2: “proof of” → “proof in”

• p. 203, 2nd para after Theorem 6.3, l. 2: “if two” → “if several”

• p. 204, l. 2: “by transforming” → “by showing how to transform”

• p. 204, Definition 6.7, l. 2: “path” → “thread”; l. 4: Replace

A path is understood as a sequence of sequents in which the

successor relation coincides with the relation of being one of

the premises of the immediately following sequent.

by

A thread is a sequence of occurrences of sequents in the proof

where each sequent is a premise of an inference, the conclusion

of which is the following sequent in the thread.

• p. 204, Definition 6.7, 2nd para, l. 2: “path” → “thread”

• p. 207, 2nd para of inductive step, l. −3: “side-formulas” → “auxiliary

formulas”

• p. 208, 3 lines below second display: “path” → “thread”

• p. 208, 7 lines below second display: “end-formula” → “end-sequent”

• p. 212, l. −4: “leading to he right” → “leading to the right”
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• p. 214, case D3: replace “𝛤” by “𝛤2”

• p. 220–231: “𝛺1” → “𝛩”

• p. 221, B2. Rule ir: insert: “See Problem 6.20”

• p. 223, para below first display, l. 1: “to that of the” → “to the”; l. −2:

“cut-free derivation” → “derivation without mix”

• p. 227, l. 1: “In this case” → “In this case, as long as 𝑀 ≠ 𝐹(𝑡),”

• p. 230, case B10, l. 1 after the first display: “It can be” → “If 𝑀 ≠ 𝐴, the

proof can be”

• p. 244, l. −1: “Section 6.7” → “Figure 6.1”

• p. 247, 1st para before 1st display, l. 3: “Case (A)” → “case A”

• p. 248, l. 1: “Figure 6.7” → “Figure 6.1”

• p. 250, Problem 6.23, “proofs c and d” → “proofs (c) and (d)”

• p. 254, Definition 6.29: Number inductive cases (a)–(c).

• p. 254, section 6.10, 1st para, l. 3: “one cannot have access to it” → “one

cannot appreciate this significance”

• p. 256, Proposition 6.33 should read: “LJ does not prove all instances of

⇒ 𝐴 ∨ ¬𝐴.”

• p. 256, replace the proof of Proposition 6.33 with:

Suppose it did. Then it would have to prove, in particular,

all instances of ⇒ 𝐴 ∨ ¬𝐴 for 𝐴 atomic. Then by Theorem

6.32, LJ proves either ⇒ 𝐴 or ⇒ ¬𝐴. If it proves the latter,

it must also prove 𝐴 ⇒ , since the only possible last inference

of a cut-free proof of ⇒ ¬𝐴 in LJ is ¬r. Consequently, LJ
proves either ⇒ 𝐴 or ⇒ ¬𝐴. However, a cut-free proof of

⇒ 𝐴 or of ⇒ ¬𝐴, where 𝐴 is atomic, cannot contain any

operational inferences, by Theorem 6.30 (subformula property).

On the other hand, weakening, contraction, and interchange

rules cannot produce a sequent with an empty succedent or

antecedent unless the premise already had an empty succedent

or antecedent, respectively. Thus, there can be no cut-free proof

of either ⇒ 𝐴 or 𝐴 ⇒ at all, for atomic 𝐴.

• p. 256, Corollary 6.34 should read: “LM does not prove all instances of

⇒ (𝐴 ∧ ¬𝐴) ⊃ 𝐵.”

• p. 256, proof of Corollary 6.34 should read:
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It is an easy exercise to find a proof in LJ of

¬¬(𝐴 ∨ ¬𝐴) ⊃ (𝐴 ∨ ¬𝐴) ⇒ 𝐴 ∨ ¬𝐴.

If there were derivations of all instances of ⇒ ¬¬𝐴 ⊃ 𝐴, there

would be one of ⇒ ¬¬(𝐴∨¬𝐴)⊃ (𝐴∨¬𝐴) in particular. Using

a cut, we would obtain a proof of ⇒ 𝐴 ∨ ¬𝐴, contradicting

Proposition 6.33.

• p. 256, Corollary 6.35 should read: “LM does not prove all instances of

⇒ (𝐴 ∧ ¬𝐴) ⊃ 𝐵”

• p. 259, l. 2–3: delete “Since the axioms contain no quantifiers, the premise

of 𝐼 contains no quantifiers.”

• p. 259, 2nd full para, l. 2: “and” → “and in which”

• p. 259, 4th para, l. 1: delete “Inductive step:”

• p. 260, l. 1 after second display: “by adding” → “by applying”

• p. 261, first full para, l. 1: Italicize “Inductive step:”

• p. 268, l. −5: “form 𝐵(𝑡1 , . . . , 𝑡𝑛)” → “form ⇒ 𝐵(𝑡1 , . . . , 𝑡𝑛)”

Chapter 7

• p. 269, 2nd para, l. −1: “Thus” → “Thus 0 abbreviates 0,”

• p. 271, fn. 2, l. 2: “axiom sequents” → “initial sequents”

• p. 275, l. 1 after Problem 7.8: “Any proof in LK using the induction rule cj

and making use of mathematical initial sequents counts as a proof in PA.”

→ “A proof in PA is a proof using the rules of LK or the induction rule

cj, and in which all initial sequents are either logical initial sequents or

mathematical initial sequents, i.e., a instances of PA𝑆1–PA𝑆10.”

• p. 275, l. −3: “PA” → “LK”

• p. 279, 1st full para after Problem 7.11, l. 4: “¬(0 = 0) ⇒ ”→ “¬ 0 = 0 ⇒ ”

• p. 280, l. 1 after second display: “ ⇒ 𝑠 = 𝑢” → “ ⇒ 𝑡 = 𝑢”

• p. 281, Proposition 7.12, Induction basis: “the base case”→ “the induction

basis”

• p. 281, l. −2: “Here’s the” → “Here’s a’

• p. 282, Proposition 7.16: “proof” → “proof in PA”
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• p. 283, l. 1 of Proposition 7.19 and 7.20: “regular proof” → “regular

proof in PA”

• p. 285, 5th para, l. 3: “on that formula” → “on that formula (if any)”

• p. 286, fn. 9: Insert at beginning: “Recall that”

• p. 286, last para, l. 4: “lowermost implicit” → “These lowermost implicit

operational”

• p. 287, add to end of last para of Section 7.3: “In particular, the end-part

itself contains no operational inferences at all. ”

• p. 289, Proposition 7.27: “Suppose 𝜋 is a regular proof without free

variables other than eigenvariables.” → “Suppose 𝜋 is a regular proof in

PA of an atomic sequent in which all free variables are eigenvariables.”

• p. 289, proof of Proposition 7.28, l. 3: “closed term 𝑛.” → “closed term 𝑛.

(Recall for simplicity we are, for now, not allowing + and · in our terms.)”

• p. 291, 2nd full para, l. −3: “So, in the new proof, the maximal length of

induction chains is ≤ 𝑚, and the number of induction chains of length 𝑚

has been decreased by at least 1.” → “We have turned at least on induction

chain of length 𝑚 into (possibly many) induction chains of length < 𝑚. If

𝜋∗
is the resulting proof, then either 𝑚(𝜋∗) < 𝑚 (if the induction chain

considered was the only one of length 𝑚) or 𝑚(𝜋∗) = 𝑚 and 𝑜(𝜋∗) < 𝑜(𝜋).”

• p. 292, 4th displayed proof, right premise of the last cut: “𝐹(0′′) ⇒ 𝐹(0′′)”
→ “𝐹(0′) ⇒ 𝐹(0′′)”

• p. 294, l. 2 below the first display: “contains the formula” → “also

contains the formula”

• p. 294, l. 3 below the first display: Add a footnote: “You might wonder

why we have to use a cut on ∀𝑥 𝐹(𝑥) and can’t just replace the original

cut on 𝐹(𝑛) alone. The reason is that 𝜋′
1

and 𝜋′
2

may contain ∀𝑥 𝐹(𝑥) on

the right or left, respectively, which are contracted. The cut on ∀𝑥 𝐹(𝑥),
deals with all these formulas, not just those arising from the ∀r and ∀l

inferences displayed.”

• p. 294, 1st full para, l. 2: Replace

Both operational boundary inferences are still present (at the

end of the left copy of 𝜋2 and at the end of 𝜋1(𝑎)), plus a copy

each of the proofs ending in their premises with the operational

inference replaced by a weakening (𝜋1(𝑛) and the right copy of

𝜋2).

by
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The sub-proofs containing the operational boundary inferences

are still present (leading to the right premise of the left cut on

∀𝑥 𝐹(𝑥) and the left premise of the right cut.). We have added

copies of these sub-proofs, with operational inference replaced

by a weakening (these are the sub-proofs above the left and

right premise of the upper two cuts).

• p. 296, l. 5 below the first display: “choose on” → “choose one”

• p. 297, l. −2 before the last display: “Including displaying” → “If we also

display”

• p. 299, l. 2 after 3rd display: Replace

Again, the inductive hypothesis yields a proof 𝜋∗
1

with the

end-sequent being 𝛤∗ , 𝐴,𝛥∗ ⇒ 𝛩∗
, or 𝛤∗ , 𝐵,𝛥∗ ⇒ 𝛩∗

, or

𝛤∗ , 𝐴, 𝐵,𝛥∗ ⇒ 𝛩∗
. In the first two cases, let 𝜋∗ = 𝜋∗

1
; in the

third, 𝜋∗
is

by

Again, the inductive hypothesis yields a proof 𝜋∗
1

with the

end-sequent being one of:

𝛤∗ ,𝛥∗ ⇒ 𝛩∗ 𝛤∗ , 𝐴,𝛥∗ ⇒ 𝛩∗

𝛤∗ , 𝐵,𝛥∗ ⇒ 𝛩∗ 𝛤∗ , 𝐴, 𝐵,𝛥∗ ⇒ 𝛩∗

In the first three cases, let 𝜋∗ = 𝜋∗
1
; in the last, 𝜋∗

is

• p. 299, l. −5: “sub-sequents of” → “sub-sequents”

• p. 302, l. 2 below the first display: “on” → “at”

• p. 303, 1st para, l. −2: “starts with” → “contains”

• p. 303, l. 4 after the display: “of principal” → “of the principal”

• p. 305, l. 3: “It also” → “The end-part also”

• p. 305, l. 6–7: delete “How do we remove such a suitable cut?”

• p. 305, 1st full para, l. −6: “In the” → “How do we remove such a suitable

cut? In the”

• p. 307, last para, l. −3: “conclusion a” → “conclusion of a”

• p. 307, fn. 13: “In the more general case we’re proving here, there” →
“There”
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Chapter 8

• p. 313, Definition 8.3, add at end: “If < is a well-ordering of 𝑋 we say

that 𝑋 is well-ordered by < and that ⟨𝑋, <⟩ is a well-ordered set.”

• p. 314, Proof of Proposition 8.4, last para, l. 1: “no 𝑢” → “there is no 𝑢”

• p. 314, Problem 8.7: “total ordering” → “strict linear ordering”

• p. 316, para following Problem 8.12, l. 2–4: “digit” → “number”; l. 3:

“(word)” → “(words)”

• p. 316, l. −1 above Proposition 8.14: “total” → “strict linear”

• p. 317, Problem 8.15, last line of display: “or or” → “or”

• p. 319, l. −1 before Proposition 8.18: “well-ordered by ≺lex.” →

well-ordered by ≺lex, that is,

⟨𝑥, . . . , 𝑥︸   ︷︷   ︸
𝑛 𝑥’s

⟩ ≺lex ⟨𝑦, . . . , 𝑦︸   ︷︷   ︸
𝑚 𝑦’s

⟩ if, and only if, either 𝑥 < 𝑦 or 𝑥 = 𝑦 and 𝑛 < 𝑚.

• p. 319, l. −1: “Exercise” → “Left as an exercise”

• p. 320, proof of Proposition 8.20. Replace

(𝑋∗
=)∗≻

lex

is ordered by the lexicographical order ≪ based on ≺lex

itself, i.e., the ordering of sequences of constant sequences of

elements of 𝑋 where

⟨𝑥, . . . , 𝑥︸   ︷︷   ︸
𝑛 𝑥’s

⟩ ≪ ⟨𝑦, . . . , 𝑦︸   ︷︷   ︸
𝑚 𝑦’s

⟩ if, and only if, either 𝑥 < 𝑦 or 𝑥 = 𝑦 and 𝑛 < 𝑚.

by

(𝑋∗
=)∗≻

lex

is ordered by the lexicographical order ≪ based on ≺lex

itself, i.e., the ordering of sequences of constant sequences of

elements of 𝑋. That is, if

𝑠 = ⟨𝑦1 , . . . , 𝑦𝑘⟩
𝑡 = ⟨𝑦′

1
, . . . , 𝑦′ℓ ⟩

where the 𝑦𝑖 , 𝑦
′
𝑖

are constant sequences, then 𝑠 ≪ 𝑡 holds if,

and only if, one of the following conditions is satisfied:

1. 𝑘 < ℓ and 𝑦1 = 𝑦′
1
, . . . , 𝑦𝑘 = 𝑦′

𝑘
, or
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2. there is a 𝑗 < 𝑘 such that 𝑦1 = 𝑦′
1
, . . . , 𝑦 𝑗 = 𝑦′

𝑗
and 𝑦 𝑗+1 ≺lex

𝑦′
𝑗+1

, where ≺lex is the lexicographic ordering of constant

sequences.

• p. 320, Section 8.3, 1st para, l. 4: “Cantor-Bachmann” → “Cantor (or

Cantor-Bachmann)”

• p. 321, 3rd full para, l. 3: “non-decreasing” → “non-increasing”

• p. 321, 4th full para, l −4: “all powers” → “all sums of powers ”

• p. 321, 4th full para, l. −1 and −2: “ordinals” → “ordinal notations”

(twice)

• p. 321, l. −3: “ordinals” → “ordinal notations”

• p. 322, l. 3 after the second display: “followed” → “is followed”

• p. 322, l. −2: “𝛼 and 𝛽 ∈ 𝑂≤𝑘” → “𝛼, 𝛽 ∈ 𝑂≤𝑘”

• p. 324, proof of Proposition 8.25, l. 4: “clause c” → “clause (c) of

Definition 8.21”; 2nd para, l. 3: “clause a” → “clause (a)”; l. 3 and l. 6:

“clause b” → “clause (b)”

• p. 325, l. 2: “clause b” → “clause (b)”; l. 2 and 3: “clause c” → “clause

(c)”

• p. 325, fn. 2, l. 2: “such that” → “such that (b)”

• p. 325, fn. 3: “𝛼𝑖 ≺ 𝛽𝑖 or 𝛽 𝑗 ≺ 𝛼𝑖 or 𝛼𝑖 = 𝛽𝑖” → “𝛼𝑖 ≺ 𝛽 𝑗 or 𝛽 𝑗 ≺ 𝛼𝑖 or

𝛼𝑖 = 𝛽 𝑗”

• p. 329, Proposition 8.38: add full stop at end

• p. 330, l. −3: “and the least” → “and for the least”

• p. 331, l. 4: ““clause b or clause c” → “clause (b) or clause (c) of

Definition 8.21”; l. 5: “clause b” → “clause (b)”; l. 8: “clause c” → “clause

(c)”

• p. 331, 1st para after Problem 8.44, l. 3: “from the previous section” →
“from Section 8.2”

• p. 331, 1st para after Problem 8.44, l. −2: “𝛼1 ≥𝑘 𝛼𝑖+1” to 𝛼𝑖 ⪰𝑘 𝛼𝑖+1

• p. 331, Proposition 8.45 and Corollary 8.46: “well-ordering” → “well-

ordered set”

• p. 331, proof of Corollary 8.46: “ordinal” → “ordinal notation” (3 times)

• p. 332, l. 7–8: “non-decreasing” → “non-increasing”
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• p. 333, Definition 8.48 should read:

A set 𝛼 is an ordinal if, and only if,

1. it is transitive, i.e., for all 𝛽 ∈ 𝛼, 𝛽 ⊆ 𝛼, and

2. ⟨𝛼, ∈⟩ is a well-ordering.

• p. 335, proof of Proposition 8.56: “by the previous problem” → “by

Problem 8.51”

• p. 335, proof of Proposition 8.57, l. 2–4: Replace

Just as in the case of 𝜔 discussed above, any such set is itself an

ordinal, since every member of it is an ordinal, and an ordinal

is equal to the set of ordinals less than it. If 𝑋 is downward

closed, all these ordinals are members of 𝑋.

by

Just as in the case of 𝜔 discussed above, any downward closed

set 𝑋 is itself an ordinal: every member of it is an ordinal, an

ordinal is equal to the set of ordinals less than it, and since 𝑋 is

downward closed, all these ordinals are members of 𝑋.

• p. 337: Replace matchstick diagrams by:

· · ·

· · · ,

· · · ,

• p. 338, l. 3: replace matchstick diagram by “ ”

• p. 338: Replace matchstick diagrams by:

· · ·
· · · · · ·

• p. 338, Replace 4th display

⟨𝑘1 , . . . , 𝑘𝑛⟩ ≤ ⟨𝑘′
1
, . . . , 𝑘′𝑛⟩ if, and only if, 𝑘 𝑗 < 𝑘′𝑗 and, for some 𝑗 ≤ 𝑛,

𝑘𝑖 = 𝑘′𝑖 for 𝑖 = 𝑗 + 1, . . . , 𝑛.

by

⟨𝑘1 , . . . , 𝑘𝑛⟩ ≤ ⟨𝑘′
1
, . . . , 𝑘′𝑛⟩ if, and only if, for some 𝑗 ≤ 𝑛,

𝑘 𝑗 < 𝑘′𝑗 and 𝑘𝑖 = 𝑘′𝑖 for 𝑖 = 𝑗 + 1, . . . , 𝑛.
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• p. 339, l. 3: “is 𝜀0” → “. . . is 𝜀0”

• p. 341, 2nd para after Problem 8.68, l. 1: “in the previous section” →
“above”

• p. 342, l. −2: “ordinals” → “ordinal notations”

• p. 343, l. 1: “ordinal” → “ordinal notation”

• p. 343, l. 1 after first display: “the ordinals 𝛽𝑖 are the ordinals” → “the 𝛽𝑖
are the ordinal notations”

• p. 343, 1st full para, l. 1: “immediate predecessor” → “parent”

•

• p. 343, 1st full para, l. 2: “ordinal” → “ordinal notation”

• p. 343, 1st full para, l. 3: “descendant” → “parent’s parent”

• p. 343, l. 1 after 2nd display: “ordinal” → “ordinal notation”

• p. 343, Problem 8.70 should read:

Compute the ordinal notations assigned to nodes in the tree

resulting by removing the head in the previous example. Verify

that the ordinal notation assigned to the root is less than that

assigned to the root of the original tree, 𝝎𝝎𝝎0 ·3+𝝎0 ·2+𝝎𝝎0 ·2+𝝎0
.

• p. 345, l. 3: “ordinal” → “ordinal notation”

Chapter 9

• p. 347, last para, l. 1, 2, 4, 5: “path” → “thread” (4 times)

• p. 349, Definition 9.3, inductive clause: introduce subsidiary numbering

for the inductive clauses.

• p. 348, 1st full para, l. −4, −1: “path” → “thread” (2 times)

• p. 348, 3rd full para, l. 3: “mix” → “mix”

• p. 350, l. −3 before Problem 9.4: ‘conclusion’ → ‘“conclusion”’

• p. 356, 1st full para, l. 4: “their” → “its”

• p. 356, 3rd full para, l. 3: “the last of” → “any lowermost cut among”

• p. 356, 3rd full para, l. 4: “than” → “than the one assigned to”
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• p. 358, l. 3 below the last display: “essenial” → “complex”; “own-end-

part” → “own end-part”

• p. 359, l. 1 below the 1st display: “The example also illustrates how the

ordinal notation assigned to cj inferences increases.” → “This example

also illustrates how the ordinal notation increases when going from the

premise to the conclusion of a CJ inference.”

• p. 360, Section 9.3, l. 4 of 1st para: “𝛤∗ ⇒ 𝜃∗
” → “𝛤∗ ⇒ 𝛩∗

”

• p. 361, l. 2: “inferences” → “inference”

• p. 361, l. −2 above display: “it is cut-formula of" → “of which 𝐵 is the

cut-formula”

• p. 362, 1st full para, l. −2: “never greater” → “never strictly smaller”

• p. 362, Proposition 9.12, (1): add period at end

• p. 362, Proposition 9.12, (5), l. 2: “sequents in 𝜋” → “sequents”

• p. 363, proof of Proposition 9.12, Inductive step, 1st para: add at end:

“(In this case, the end-part consists only of the end-sequent, and so the

proof is not simplified.)”

• p. 363, l. 1 after 2nd display: “𝛼 = 𝑜ℓ (𝐴, 𝛤 ⇒ 𝜃;𝜋)” → “𝛼 =

𝑜ℓ (𝐴, 𝛤 ⇒ 𝛩;𝜋)”

• p. 365, 2nd and 3rd displa: add period at end

• p. 367, last para, l. 2: “on these labels” → “on the labels inherited from 𝜋.”

• p. 367, l. −3: “levels by” → “level labels by”; “decreasing levels” →
“decreasing labels”

• p. 367, l. −2: “levels” → “labels”

• p. 368, l. 1 after the second display: “readjusting the levels to their

correct values” → “readjusting the labels to match the actual levels of the

corresponding sequents”

• p. 368, Section 9.4, l. 3: “premise” → “premises”

• p. 372, last para, l. 3: “other complex cuts” → “one or more complex

cuts”

• p. 374, l. −4: “the same as” → “the same as those of”

• p. 374, l. −3: “corresponding levels of sequents” → “levels of the

corresponding sequents”

• p. 375, add periods at the ends of the last two displays
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Appendices

• p. 381, Definition B.1, l. 5: “property and object 𝑥 might have” →
“property”

• p. 381, Definition B.4, l. 1: “intersection” → “intersection”

• p. 381, Definition B.4, 2nd displayed equation should read:

𝐴 ∩ 𝐵 = {𝑥 : 𝑥 ∈ 𝐴 and 𝑥 ∈ 𝐵}

• p. 384, section C.2, l. 1: “the theorem is provable in M0” → “a theorem is

provable in M0 or M1”

• p. 384, 2nd para: delete subscript “M0” from the statements of the derived

rules.

• p. 385: delete subscripts “M1” and “S1”

• p. 386, 2nd full para, l. 1: “Start with axioms” → “Start with axiom”

• p. 394, insert after the table of rules:

The rule ∀i and ∃e are subject to eigenvariable conditions. In

∀i, the variable 𝑐 must not occur in any open assumption. In

∃e, the variable 𝑐 must not occur in 𝐶, nor in any assumption

open in the sub-deduction leading to the minor premise 𝐶,

except the assumptions of the form 𝐴(𝑐), all of which must be

discharged at the inference.

• p. 395, E.2.1: “conversion” → “conversions”

• Appendix G: change all occurrences of “deg” to “dg” and all occurrences

of “𝑟𝑘” to “rk”


