Epsilon theorems in intermediate logics

Baaz, Matthias, and Richard Zach. 2022. Epsilon theorems in intermediate logics. The Journal of Symbolic Logic, 1–40. DOI: 10.1017/jsl.2021.103. Forthcoming.

Any intermediate propositional logic (i.e., a logic including intuitionistic logic and contained in classical logic) can be extended to a calculus with epsilon- and tau-operators and critical formulas. For classical logic, this results in Hilbert’s ε-calculus. The first and second ε-theorems for classical logic establish conservativity of the ε-calculus over its classical base logic. It is well known that the second ε-theorem fails for the intuitionistic ε-calculus, as prenexation is impossible. The paper investigates the effect of adding critical ε- and τ -formulas and using the translation of quantifiers into ε- and τ -terms to intermediate logics. It is shown that conservativity over the propositional base logic also holds for such intermediate ετ -calculi. The “extended” first ε-theorem holds if the base logic is finite-valued Gödel-Dummett logic, fails otherwise, but holds for certain provable formulas in infinite-valued Gödel logic. The second ε-theorem also holds for finite-valued first-order Gödel logics. The methods used to prove the extended first ε-theorem for infinite-valued Gödel logic suggest applications to theories of arithmetic.

The genealogy of ‘∨’

Elkind, Landon D. C., and Richard Zach. 2022. The Genealogy of ‘∨.’ The Review of Symbolic Logic, 1–38. DOI: 10.1017/S1755020321000587. forthcoming

The use of the symbol ∨ for disjunction in formal logic is ubiquitous. Where did it come from? The paper details the evolution of the symbol ∨ in its historical and logical context. Some sources say that disjunction in its use as connecting propositions or formulas was introduced by Peano; others suggest that it originated as an abbreviation of the Latin word for “or”, vel. We show that the origin of the symbol ∨ for disjunction can be traced to Whitehead and Russell’s pre-Principia work in formal logic. Because of Principia’s influence, its notation was widely adopted by philosophers working in logic (the logical empiricists in the 1920s and 1930s, especially Carnap and early Quine). Hilbert’s adoption of ∨ in his Grundzüge der theoretischen Logik guaranteed its widespread use by mathematical logicians. The origins of other logical symbols are also discussed.